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Abstract 

Hydrogels contain high amount of water allowing their use as surrogates to human tissues with 

specific properties that can be tuned by additives. Gellan gum is a gel-forming material of interest 

and is a replacement for other common gelling agent with limited use as a tissue phantom. 

Therefore, this thesis examines the application of gellan gum gels as a novel magnetic resonance 

imaging (MRI) phantom with a design of experiments model to obtain tunable properties. The 

analysis was extended to include mechanical and electrical properties with a separate design of 

experiment. Gels doped with synthesized superparamagnetic iron oxide nanoparticles (SPIONs) 

and MnCl2 or GdCl3 were scanned using magnetic strengths ranging from 230 µT to 3 T. Nineteen 

distinct gel samples were formulated determining the linear, quadratic, and interactive effects of 

each contrast agent by a central composite design of experiments. For mechanical and electrical 

characterization, the gellan gum gels were doped with LiCl to induce crosslinking and to match 

the electrical properties of tissues. Additionally, the concentration of gellan gum and propylene 

glycol (PG) were varied. The models were analyzed with ANOVA and was able to accurately 

predict the desired properties from the concentration seen by the adjusted R2 values. Therefore, 

novel gellan gum gels were prepared with controllable magnetic relaxation, electrical conductivity, 

and mechanical strength. 

Keywords 

Tissue equivalent phantoms, hydrogels, gellan gum gels, SPIONs, design of experiments, MRI 

phantoms, mechanical properties, relative permittivity, electrical conductivity. 
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Chapter 1  

1  Introduction 

1.1  Overview 

The main concepts discussed in the thesis are introduced in the following chapter. This includes 

discussing the use of hydrogels as a tissue mimicking material to study the performance of medical 

physics devices and treatment procedures. Gellan gum gels are introduced and are compared to 

other gelling agents. The uses of phantoms for medical physics applications, including those in 

magnetic resonance imaging (MRI), are discussed. Then, the use of mathematical models derived 

from multifactorial design of experiments characterizing the effect of the composition of a 

phantom on its properties is described. Finally, the motivations of the work are presented with 

potential applications. 

1.2  Hydrogels as tissue equivalent materials 

Tissue-mimicking or tissue equivalent materials are commonly used to evaluate the effectiveness 

and performance of medical procedures including medical imaging and treatments. For example, 

advancements in imaging techniques have allowed clinicians the ability to more accurately 

measure and diagnose patients leading to more effective and directed treatments, but these 

techniques need to be evaluated prior to ensure quality assurance (QA) of the patient and device 

[1].  Tissue mimicking materials allow the quality assurance of the procedure without adding harm 

or discomfort to patients. Here, quality assurance refers to any process that can provide a required 

level of performance of a given procedure before a patient is subjected to it. By contrast, quality 

control may be required in some procedures after the treatment or imaging procedure. The use of 

cadaver or animal tissues for QA presents ethical and practical problems, associated with sourcing, 

storage, spoilage and disposal of medical waste [2]. This would only exacerbate the already high 

costs and stringent time constraints associated with the evaluation of medical devices, including 

MRI [3]. By contrast, tissue mimicking materials can be prepared from a variety of materials 

solving most of the issues associated with the use of real tissues [4]. These tissue equivalent 

materials are often referred to as tissue phantoms and are useful in calibration, testing of operators, 

defining new procedures, and evaluating existing procedures [5]. Many soft tissues contain a high-
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water content requiring the corresponding phantoms to also contain or mimic the properties of 

water.  Hydrogels, which are comprised of a hydrophilic polymer matrix dispersed in water, may 

act as a phantom. Such polymer-water system can generally exist in two forms: in a free-flowing 

sol or in a semi-rigid gel structure, in which the polymer matrix preserves a three-dimensional 

(3D) structure without precipitating from solution and while retaining high water concentrations. 

The properties of hydrogels are similar to water allowing their use as a basis for many soft tissue 

phantoms. Hydrogels may be formed by a wide range of gelling agents and additives allowing for 

a variety of soft tissues to be mimicked [6]. The amount of gelling agent and water content, the 

presence of a co-solvent, crosslinking agents, and other additives may be used to enhance and 

control the properties to match those of a desired tissue. Gellan gum is a gelling agents which was 

developed as an alternative to gelatin and agar in the pharmaceutical industry and has applications 

in the food industry [7]. Gellan gum is an anionic polysaccharide produced from the microbe 

Sphingomonas elodea (formerly Pseudomonas elodea) [8]. Gellan gum is able to form transparent 

to translucent gels with high water content, good thermal stability, large range of mechanical 

properties, and simple preparations [9].  

1.3  Tissue phantoms in medical physics 

The requirements for any tissue phantom depend on the procedure; therefore, a single phantom 

cannot generally be used for all purposes. If used in MRI, the magnetic properties of the proton 

dipoles need to be controlled. In addition, the gel compressive modulus and electrical conductivity 

may also be of specific interest. Outside of imaging, hydrogels have additional application as a 

tissue equivalent material in radiation therapy as dosimeters. Dosimeters are devices used to 

measure the total ionizing radiation dose delivered. Our group has previously studied gellan gum 

hydrogels as tissue equivalent materials with the addition of dose sensitive additives [10,11]. The 

thesis focuses on the MRI application of similar phantoms which may have future benefit with the 

combination of both MRI and radiation therapy in MRI-guided radiation therapy. Due to the high 

water content of the hydrogels, their intrinsic MRI properties are similar to liquid water which 

differs from most soft tissues. Therefore, to mimic the tissue properties, MRI contrast agents are 

added to hydrogel phantoms. To efficiently determine the effect of the contrast agents, a 

multifactorial design of experiments is implemented relating concentration to magnetic properties. 

This allowed the effects to be modeled in a mathematical equation allowing for tunable MRI 

properties, or more precisely proton relaxation times (as explained in Chapter 2.2.1 of this thesis).  
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Whenever a magnetic wave is generated, an electrical wave is also generated orthogonally to the 

magnetic wave and travelling in the same direction. Therefore, the phantoms electrical properties 

in an MRI scanner can be an important factor influencing image quality. Additionally, having 

tissue equivalent electrical properties of phantoms is of interest in other applications such as 

induced hyperthermia in cancer treatment [12,13], gel capacitors [14], soft robots [15], stretchable 

ionic conductors [16], liquid separation [17], and electromechanical actuators [18]. The 

conductivity of most soft tissue is due to the presence of electrolytes. To properly model this 

phenomenon, salts of monovalent cations were tested in the gellan gum gels. As the mechanical 

integrity of the hydrogels will vary with composition, mechanical properties were also examined. 

The mechanical tests were focused on blunt impacts that a phantom may experience in use or 

transport. Having tunable mechanical properties has further applications in ultrasound imaging 

where gellan gum phantoms were used and in magnetic resonance elastography [9,19]. Therefore, 

an additional multifactorial design of experiments was used to model both the electrical and 

mechanical properties of the hydrogel to the concentration of the additives and gelling agent 

concentration, in order to better match tissue and have tunable properties.  

1.4  Motivation and background/scope 

Due to their water content and tunable properties, hydrogels have the potential to mimic tissue in 

a variety of disciplines by optimizing additive concentrations. To account for the addition of 

various additives, mathematical models can be built to quantify the effects and to have tunable 

properties fitting various tissues. Gellan gum’s high-water content, thermal stability, optical 

clarity, low cost, ready availability, and simple preparation are of great interest for hydrogels as 

tissue mimicking materials. 

 

The main goal of this thesis was to investigate gellan gum materials as tissue mimicking MRI 

phantoms. Tunable properties were developed to cover a wide range of soft tissues. The 

mechanical and electrical properties of the hydrogel were also studied as the mechanical properties 

affect the durability of the phantoms to be scanned repeatedly and electrical properties affects how 

the electromagnetic fields will permeate through the hydrogel medium during MRI. The properties 

of the gel were modified with the addition of various additives and the gels concentration itself in 

order to characterize the mechanical and electrical behaviour of the gels.  
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Chapter 2 of the thesis covers a literature review of hydrogels as tissue-mimicking phantoms for 

magnetic, mechanical, and electrical properties and includes some background on their analysis. 

Chapter 3 focuses on the results of the MRI studies conducted that was published in the Magnetic 

Resonance Imaging journal. Chapter 4 contains the results for the electrical and mechanical studies 

with a further design of experiments. Lastly, Chapter 5 concludes on the main results of the thesis 

and discusses future work.  
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Chapter 2  

2  Literature review 

2.1  Overview 

A review of current literature on tissue-equivalent materials is presented. The principles behind 

MRI imaging is provided with a review of MRI phantoms, including gels and MRI contrast agents. 

The theory associated with the use of contrast agents is explained. The concepts for electrical and 

mechanical measurements of the phantoms are introduced and how the electrical and mechanical 

properties impact the phantoms use is discussed. The design of experiments to obtain tunable 

properties is also discussed.  

2.2  Hydrogels as tissue mimicking materials  

Different tissue mimicking gels are often prepared from either polysaccharides and proteins (e.g. 

agarose, and gelatin) or synthetic materials such as polyvinyl alcohol (PVA) [1]. Biopolymers such 

as polysaccharides are produced by living organisms and often contain secondary or tertiary 

structures from folding (e.g. extensive hydrogen bonding and supramolecular structure) [2]. 

However, the properties of biopolymers can vary between batches depending on their preparation 

conditions and are more difficult to predictably control [3]. Biopolymers are also subjected to 

microbial growth requiring antimicrobial agents to sustain long-time use. In general, synthetic 

gelling agents allow for a greater degree of control on properties, allow for a greater flexibility in 

their synthesis, and do not promote microbial growth, but lack some features (e.g. stable gel 

formation at low concentration and optical clarity). Gellan gum, produced from Sphingomonas 

elodea (formerly Pseudomonas elodea) [4] is an anionic polysaccharide biopolymer consisting of 

four repeating units of β-D-glucose in positions 1 and 3, β-D-glucuronic acid in position 2 and 

α-L-rhamnose in position 4. Hydrogel structure is formed during cooling of a gellan gum solution 

and is caused by aggregation. A thermally reversible random ordering from a single-stranded coil 

to a double helix transition occurs and further aggregation of the double helical molecules leads to 

junction zones of the structure [5]. The transition at low gel concentrations is ionotropic and 

therefore the presence of cations is required for the formation of stable hydrogels as the helix 

aggregation and network formation are induced by the presence of cations. Therefore, the gelation 
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properties are related to the nature of the cations with divalent cations allowing stronger gels than 

monovalent from the additional binding between pairs of carboxyl groups on neighboring helices 

[6]. Gellan gum can be further categorized into two types corresponding to the amount of acyl 

functional groups, as seen in Figure 2-1.  
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Figure 2-1 The chemical structure of high acyl gellan gum (A) and low acyl gellan gum (B) 

 

When produced, the gellan gum contains a high concentration of acyl functional groups. With an 

alkali treatment, the acyl groups are hydrolyzed and the gellan gum is deacetylated to form the low 

acyl variety. High acyl gellan gum forms translucent gels, produces a sol at higher temperatures 

and the increase acyl groups hinder the packing and associations between chains making the gels 

weaker [4]. Low acyl gellan gum forms transparent gels and dissolves in deionized water at 90 ºC. 

Therefore, due to the tissue equivalency, high water content, high gelling efficiency, strength 

range, and transparency, low acyl gellan gum gels [7] were chosen to be modified as a tissue 

phantom in this work. Gellan gum has been used as a tissue mimicking phantom in research for 
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other modalities [8–12]. However, gellan gums use as a tissue mimicking phantom for MRI 

applications is limited. 

2.2.1  Magnetic resonance imaging (MRI) principles 

Due to its non-invasive nature, absence of ionizing radiation, and high tissue contrast, magnetic 

resonance imaging (MRI) is a major diagnostic tool, aiding clinicians in both disease diagnosis 

and patient treatment planning. MRI signal is generated from the induced voltage by internal 

radiofrequency coils that detect the shift in the magnetic moments of atomic nuclei. Atomic nuclei 

consist of nucleons (protons and neutrons), and all nucleons have an intrinsic spin. If the nuclei 

contains an odd number of either protons and/or neutrons, then the nuclear spin is greater than 0 

which induces a weak magnetic moment, whereas if there is an even number of both protons and 

neutrons the total spin will be equal to 0. Any nucleus with a non-zero spin subjected to a magnetic 

field at a strength of B will have a precession of its magnetic moment at a frequency f, known as 

the Larmor frequency (2-1). 

𝑓 =
γ

2𝜋
𝐵 (2-1) 

Where γ is the gyromagnetic ratio, specific to that nucleus. 

Due to the high-water content and since each water molecule contains two hydrogen atoms, the 1H 

nuclei (protons) are targeted in many MRI scanners. Protons have a gyromagnetic ratio of 42.576 

MHz/T. Under a strong magnetic field, some protons will orient parallel to the main magnetic field 

with a minor contingency aligning antiparallel to the main magnetic field (dependent on the 

magnetic field strength and temperature) and will reach a state of thermal equilibrium with its 

environment. In this thermal equilibrium state, the protons will have a precession around the main 

magnetic field at the Larmor frequency out of phase from another such that their total magnetic 

field is aligned in plane with the main magnetic field and no net magnetic component exists for 

the transverse plane. Addition of a second applied magnetic field at the proton’s Larmor frequency 

will perturb each proton’s spin tilting the proton’s magnetic moment away from the net magnetic 

field and into the transverse plane, causing the proton to precess coherently. When the applied 

magnetic field is released, the proton’s magnetic moment will return and align with the main 

magnetic field out of phase. This applied magnetic field duration is an important factor in the 

reorientation time of the protons and is often delivered in short pulses. The applied magnetic field 
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is provided by a radiofrequency pulse from radiofrequency coils housed within the MRI device. 

The time required for reorientation of the proton with the main magnetic field to the thermal 

equilibrium state after the radiofrequency pulse is referred to as the relaxation time with both the 

longitudinal (in the plane of the main magnetic field) and transverse (in the orthogonal plane to 

the main magnetic field) differing. The longitudinal relaxation times are also referred to as the 

spin-lattice relaxation time, thermal relaxation or T1, where the protons magnetic moment is 

increasing to its thermal equilibrium state by its interaction with the environment. The transverse 

relaxation times also referred to as the spin-spin relaxation time or T2 differs from T1 as the 

proton’s transverse magnetic moment decreases to zero after the radiofrequency pulse, due to 

interactions with other protons in the surrounding environment. The relaxation times are 

graphically defined as first-order constants in an exponential growth or decay and occur for T1 

when the net magnetization returns to approximately 63% [(e – 1)/e] of its thermal equilibrium 

value and for T2 occurs when the induced magnetic moment is reduced to by approximately 37% 

(1/e), as seen in Figure 2-2. The different relaxation times between tissues enables a difference in 

signal intensity and contrast in the final image. A tissue with longer relaxation time will return to 

a lower magnetic moment compared to tissues with shorter T1 relaxation times during the same 

timeframe. This magnetic moment differences allow the MRI device to generate an image 

showcasing the different tissues in the final image. Due to the intrinsic difference of T1 and T2, 

short T1 times create bright images, whereas short T2 times cause darker images as the magnetic 

moment degrades faster. 
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Figure 2-2 Graphical representation of the T1 and T2 relaxation times for MRI scans where M0 is 

the steady state magnetization at thermal equilibrium, Mz is the value of longitudinal magnetization 

during relaxation, and Mxy is the value of transverse magnetization during relaxation.  

 

Although MRI provides high contrast imaging of tissues without the use of harmful ionizing 

radiation, it requires complicated and precise imaging parameters. Additionally, MRI scanners 

have large capital and operating expenses from the device itself, to the duration of scan times 

requiring trained professionals, and to the limited availability of MRI scans. Therefore, quality 

assurance is recommended to ensure optimal performance and alleviate the large wait times and 

operating expenses [13]. Optimal MRI performance occurs when scanning parameters including 

contrast, signal to noise ratio, spatial resolution, and total scan time are properly controlled [14]. 

However, differences between manufacturers and imaging conditions create unwanted variations 

in the final images, especially within a healthcare facility where consistency between scanners is 

expected [15]. To ensure high image quality and consistency between measurements, as well as 

for training and research purposes, MRI phantoms are usually employed [16,17]. All of these 

quality assurance or control techniques can be performed with a tissue equivalent phantom instead 

of the more risky, varied, and costly human trials. Further enhancements in MRI imaging occur by 
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new pulse sequences allowing novel and unique images to be generated allowing for new 

techniques to be developed. To develop new pulse sequences a need to test with a tissue equivalent 

material exists. Other usage of phantoms includes training of operators, testing equipment, 

correcting image quality, tuning operational conditions, and in research.  

2.2.2  MRI phantoms 

MRI phantoms are physical systems that provide near tissue-equivalent MRI signals typically used 

in calibration and ensuring consistent image quality between MRI scanners. Common 

requirements for an effective MRI phantom include tissue-equivalent homogenous relaxation 

times, tissue-equivalent electrical properties, homogeneity, ease of shaping, dimensional stability 

without reinforcement, simple preparation, low toxicity, and physical, temporal, chemical, and 

biological stability [17–19]. However, as each tissue within the body is structurally and chemically 

different, their relaxation times also differ. Furthermore, the pathological health of a tissue and the 

conditions it is exposed to at the moment of imaging affect its magnetic relaxation properties. 

Therefore, no one phantom is able to match the properties of all soft tissues and the need for tunable 

magnetic relaxation times presents itself. Typical MRI phantom materials include aqueous 

solutions or hydrogels doped with appropriate contrast agents [13]. Doped aqueous solutions have 

simple preparations, ease of use, long-term stability, and homogeneous properties, but they lack 

the ability to form and retain shapes, are not tissue equivalent, and are plagued with internal 

vibrations which, if misused, will generate imaging artifacts. Additionally, the similar T1 and T2 

relaxation times for aqueous solutions are not tissue equivalent. Doped aqueous solutions are used 

clinically to calibrate MRI devices due to the homogeneous relaxation properties and their 

simplicity. By contrast, hydrogels alleviate some of these issues due to quickly diminishing 

internal vibrations, simple preparations, homogenous properties, ability to retain shape, physical 

and chemical stability. Previously, synthetic and biopolymer hydrogels have been used as MRI 

phantoms, including PVA [20,21], gelatin [22], agar [23,24], agarose [25–28], carrageenan 

[17,29,30], polyacrylamide gels [31], TX-151 [32], carbomer-980 and carbopol-974P [33], with 

agarose gels being the most common. However, agarose gels is similar to most polysaccharides 

requiring high-temperature preparation (80-100 ºC) [33], often form trapped bubbles, and are 

either translucent or opaque due to light scattering. Often, the gelling agent concentration is varied 

in an attempt to mimic the magnetic properties of tissues, as T1 and T2 are affected by the 

concentration [28]. However, the concentration of agarose also affects the gel integrity and the 



www.manaraa.com

13 
 

 
 

relaxation properties creating structural issues when targeting specific tissues relaxation times. 

Modifying the gelling agent concentration will cause changes to the gel structure, strength, optical 

transparency, and will adversely affect the consistency of the scans between different 

concentrations. As a biopolymer, the properties of agarose hydrogels will vary between starting 

batches expediting the large dependency of relaxation time to gel concentration issue [33]. 

Additives may be used instead as a means to modify the relaxation properties of the hydrogel. 

 

Gellan gum use as a tissue equivalent material for MRI applications has so far been limited to our 

publication [34], which is also the subject of this thesis. However, due to gellan gum’s beneficial 

properties, it may be an interesting alternative to agarose and gelatin hydrogels. Gellan gum gels 

preparation is relatively simple with lower temperatures than other polysaccharides, without the 

requirements of specialized equipment containing, with no degassing phase or freeze-drying 

procedure, as in gels based on Tx-151 and PVA respectively. Gellan gum has a high gelling 

efficiency (low amount of gelling agent forms a gel), high thermal stability, and forms bubble-free 

and optically transparent to translucent gels. Compared to agarose gels, gellan gum gels show a 

wider range of mechanical properties that are highly adjustable [35] while having reasonable 

thermal stability [8,36]. Although gellan gum has been used to form phantom materials that mimic 

the acoustic and thermal properties of human tissues [8,35,37], its utilization within MRI is limited. 

With homogenous gel properties, dimensional stability, low cost, thermal stability, safe handling, 

transparency, simple preparation, tissue equivalence, and potential compatibility with additives, 

gellan gum could be used as an alternative to fabricate MRI phantoms.  

 

To counteract the long relaxation times in the high-water content hydrogels, the addition of T1 and 

T2-modifiers is needed in hydrogel phantoms. These can include paramagnetic ions and 

superparamagnetic nanoparticles. Common T1-modifiers for doped gel phantoms include salts of 

manganese and gadolinium, such as MnCl2 and GdCl3. Their solubility in aqueous environments 

allow easy integration to both aqueous and gelled phantoms. Gadolinium-based contrast agents are 

the most common metal salts used clinically to aid image contrast and as a paramagnetic ion to 

lower the phantom relaxation times. However, the use of gadolinium raises well-known 

environmental and health concerns, requiring careful use during handling or disposal [38], so the 
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metal is usually used in a chelated form [39], commonly with diethylenetriaminepentaacetic acid 

(DTPA). Unlike gadolinium, manganese is not a heavy metal, lessening its health concerns and 

environmental impact [40]. Other metal salts include nickel-based or copper-based contrast agents; 

however, their usage is more limited and nickel salts is a known carcinogen [41]. T2-modifiers are 

often added alongside the metal salts to independently adjust both relaxation times. T2 

modification can be achieved by changing the gelling agent concentration [29,30], addition of 

metal powders [32] or superparamagnetic nanoparticles, such as superparamagnetic iron oxide 

nanoparticles (SPIONs) [42,43]. By modifying T2 with the gelling concentration, the material’s 

mechanical integrity will also change meaning that the hydrogel may become too weak or too stiff 

at certain conditions resulting in inconsistency to the gel’s physical properties. The physical 

properties in these hydrogels would be dependent on the T2 relaxation times. The addition of metal 

powders or SPIONs avoids the structural concerns while also providing notable change of the T2 

within the gel. Since SPIONs can be conveniently produced in a repeatable manner using a 

modified co-precipitation technique [44], they were chosen to modify T2 relaxation times to ensure 

consistent hydrogel properties.  

 

Gel stability is a crucial factor for MRI phantoms as they are expected to undergo repeated use, 

and therefore, must retain physical, chemical and biological stability over an extended period. 

Ideally, the relaxation times of the phantom will not vary over time [13]. Additionally, temperature 

shifts may occur during long scan times within the gantry. Large shifts in temperature may affect 

the gel’s integrity which may alter the relaxation properties of the gel causing errors. The relaxivity 

of the contrast agents is also dependent on temperature further complicating the system [45]. 

Biopolymer can experience microorganism growth which will cause discrepancies in the scans; 

therefore, a preserving agent is required. Sodium azide is a powerful antiseptic often used in MRI 

phantoms; however, it is lethal to humans at moderate concentrations requiring careful 

consideration when used and disposed of [46]. Other possible antiseptics include methyl 4-

hydroxybenzoate (methylparaben) and propylene glycol. Methylparaben is a common antiseptic 

used in pharmaceuticals and as a preservative in the food industry [47]. Propylene glycol is not 

directly toxic to microbes but decreases the water activity, and therefore shows antibacterial 

properties [48]. Additionally, propylene glycol aids in the homogeneity and stability of gellan gum 
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gels by acting as a co-solvent.  MRI scanners are characterized by the size of the gantry and the 

magnetic field strength induced. Typical clinical scanners range from 0.35 to 3T while research 

scanners can exceed 7T. However frequency dependency on MRI properties exist for materials 

including tissues [49]; therefore a unique model is needed for each magnetic field strength to have 

certain tunable relaxation properties. 

2.2.3  Nuclear magnetic relaxation dispersion (NMRD) modelling 

In the development of novel contrast agents, often materials are compared based on the magnetic 

field strength effect on the materials relaxation rates per unit concentration (relaxivity). The 

dependency of the relaxivity to the magnetic field strengths is referred to as nuclear magnetic 

relaxation dispersion (NMRD) profiles. The profile is measured at a range of field strengths 

allowing the molecular dynamics of the contrast agent to be assessed. However, low field strength 

measurements are coupled with poorer image quality with a decrease in signal to noise ratio. To 

measure the longitudinal relaxation rates at low field strengths a fast field cycling relaxometer is 

often employed. These devices operate similarly to conventional scanners with the manipulation 

of magnetic fields causing the precession and relaxation of nuclei. Briefly, a sample is placed 

within the device and a magnetic field is applied to polarize the protons boosting signal intensity. 

The magnetic field is then relaxed to a lower magnetic field causing the sample to begin relaxing, 

and after a set time the magnetic field is increased to acquire the signal produced from the 

precessing protons. The duration and magnetic field strength applied during the relaxed state is 

modified to obtain the longitudinal magnetization as a function of time. The NMRD of a material 

can then be modelled with non-empirical equations to evaluate the physical parameters governing 

the material’s ability to alter the magnetic environment of a nearby proton. One such model is the 

Solomon-Bloembergen-Morgan (SBM) theory [50]  which fits a mathematical model to 

parameters relating to the physical relaxation of the inner sphere protons bound to the contrast 

agent, shown in Figure 2-3. The initial development to relate the relaxation rates in the presence 

of dissolved paramagnetic ions was developed by Solomon, Bloembergen, and others [51,52]. The 

equations are divided into the sum of their scalar and dipole coupling of the nuclear and electron 

spins. Further development occurred relating the feasibility of paramagnetic ions for practical use. 

However, the joint Solomon-Bloembergen theory was found to be inadequate for describing both 

longitudinal and transverse relaxivity in aqueous solutions of contrast agents. Therefore, 
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Bloembergen and Morgan added further theory for the discrepancy with the field dependency to 

the electron relaxation [52]. For paramagnetic ions with spins greater than ½, the collisions of the 

water molecules in the inner sphere to the ion leads to distortions of the electron spin levels leading 

to a transient zero-field splitting (ZFS). Zero-field splitting is the splitting of spin levels in the 

absence of magnetic field in molecules with more than one unpaired electron. This induces electron 

relaxation from the changes in the ZFS and their inclusion completes the SBM theory.  

 

SBM theory is based on paramagnetic ions with high symmetry other models are useful with other 

materials. One example includes the Rosch model for SPIONs [53,54]. R2 relaxation rates are 

difficult to measure on fast field-cycling systems and require specialized equipment to measure 

[55]. The most accurate interpretation of NMRD profiles can only be completed through 

referencing other information gleaned from additional studies. Two of these tests are electron 

paramagnetic resonance (EPR) and 17O nuclear magnetic resonance (17O NMR) which can be used 

to directly obtain parameters important to the protons relaxivity. EPR can provide the transverse 

electronic relaxation rates and 17O NMR can measure the chemical shifts over a range of magnetic 

fields and as a function of temperature or pressure, it also enables the estimation of the number of 

inner-sphere water molecules, the rotational time and the longitudinal electronic relaxation rate 

[56]. These techniques, while interesting were not used in this thesis as it was deemed that the 

simpler SBM modelling could provide adequate results. 
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Figure 2-3 Schematic illustration of the parameters in longitudinal relaxation of water protons in 

the presence of gadolinium. From reference [57] with permission from Elsevier. 

 

However, the model generates problems with paramagnetic ions with low symmetry causing a 

static ZFS of the electron spin level requiring a more complex form which have been accounted 

for in other models. In SBM theory outer sphere relaxations are often ignored due to the complex 

behaviour and requiring empirical parameters that do not relate to the physical parameters of the 

material. Furthermore, if the correlation time of the inner sphere proton is large compared to the 

correlation time of the outer sphere proton, the outer sphere can be ignored. Additionally, 

experimental data has shown that the outer sphere effects can be negligible compared to the inner 

for gadolinium ions in some complexes but are significant in others [58,59]. Another limitation of 

the SBM models is that it may not properly model very low magnetic fields and for large slowly 

rotating compounds [56,60]. The SBM model coefficients are related to the relaxation 

characteristics of the nearby protons; however limitations exist especially for slowly rotating 

objects [61]. The following is the SBM theory equations (2-2) determining the relaxivity (r1 and 

r2) of the contrast agent used (M)[58]. 

𝑟1 =
𝑃𝑚

[𝑀]

𝑞

𝑇1,𝑚 + 𝜏𝑚
 (2-2) 

Where Pm represents the mole fraction of the contrast agent M, q is the number of inner sphere 

bounded protons to the contrast agents, T1,m is the longitudinal relaxation times of the bounded 
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protons found in (2-3), and τm represents the fitted water correlation time (the duration of the 

attachment of a water molecule to the contrast agent). 

𝑇1,𝑚 = 𝐶𝐷𝐷 (
3𝜏𝑐1

1 + (𝜔𝐼𝜏𝑐1)2
+

7𝜏𝑐2

1 + (𝜔𝑆𝜏𝑐2)2
)

+
2

3
𝑆(𝑆 + 1)(𝐴𝑖𝑠𝑜)2 (

𝜏𝑒

1 + 𝜔𝑆
2𝜏𝑒

2
) 

(2-3) 

Where CDD is a term containing physical constants, which govern the dipole-dipole interactions in 

τc1 found in (2-4), τc1 and τc2
 are the dipolar coupling relaxation correlation times and is a 

combination of other relaxation times seen in (2-5) and (2-6), ωI and ωs represents the angular 

Larmor frequency of the water protons nuclear spin and the paramagnetic metal electron spin 

respectively in rad/s and are related by (2-7) and (2-8). S is the total electron spin: for gadolinium 

the value is 7/2 and for manganese the value is 5/2. Aiso is the hyperfine coupling constant that can 

be found in the fitted and is approximately is 37.9×106  and 3.9×106 rad/s for Mn and Gd-DTPA, 

respectively [56,62,63], τe is the scalar coupling correlation time and is a combination of other 

relaxation times seen in (2-9). 

𝐶𝐷𝐷 =
2

15

𝛾𝐼
2𝑔2𝜇𝐵

2

𝑟𝑀−𝐻
6

𝜇0

4𝜋
𝑆(𝑆 + 1) (2-4) 

Where γ1 is the gyromagnetic constant for protons which is 2.675×108 (T-1s-1), g is the electronic 

g factor which is 2, µB is the Bohr magneton at 9.275×10-24 J/T, rM-H is the distance of the contrast 

agent to proton bound which may be fitted in the NRMD model by nonlinear fitting but previous 

results show that for gadolinium the value is approximately 3.13 nm and for manganese the value 

is approximately 2.9 nm  [56,62,63], and µ0 is the permittivity of free space. 

1

𝜏𝑐1
=

1

𝑇1,𝑒
+

1

𝜏𝑟
+

1

𝜏𝑀
 (2-5) 

1

𝜏𝑐2
=

1

𝑇2,𝑒
+

1

𝜏𝑟
+

1

𝜏𝑀
 (2-6) 

𝜔𝐼 = 2𝜋𝑓 (2-7) 

𝜔𝑆 = 658𝜔𝐼 (2-8) 

1

𝜏𝑒
=

1

𝑇2,𝑒
+

1

𝜏𝑀
 (2-9) 
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Where τr represents the rotational tumbling correlation time which is found in the fitting the 

NMRD profile with nonlinear fitting, T1,e and T2,e represents the relaxation effectiveness of the 

paramagnetic centre which are related to the electron relaxation shown in (2-10) and (2-11) 

respectively.  

1

𝑇1,𝑒
=

∆𝑡
2

5
(

𝜏𝑣

1 + 𝜔𝑠
2𝜏𝑣

2
+

4𝜏𝑣

1 + 4𝜔𝑠
2𝜏𝑣

2
) (2-10) 

1

𝑇2,𝑒
=

∆𝑡
2

10
(3𝜏𝑣 +

5𝜏𝑣

1 + 𝜔𝑠
2𝜏𝑣

2
+

2𝜏𝑣

1 + 4𝜔𝑠
2𝜏𝑣

2
) (2-11) 

Where Δt
2 is related to the zero-field splitting magnitude which is found by nonlinear fitting of the 

NMRD profile and τv represents the correlation time of the fluctuations in the ZFS which is also 

found in the nonlinear fitting of the NMRD profile. With equation (2-2) the equations from (2-3 

to 2-11) can be substituted and nonlinear least square fittings can be solved to find the values for 

the physical quantities of τm, Aiso, τr, τv, and Δt
2 by the known relaxivity and Larmor frequencies 

after setting initial conditions. 

2.2.4  Electrical properties of tissue equivalent phantom 

The electrical properties of hydrogels can be a crucial factor for various phantom types including 

but not limited to MRI. When a magnetic wave is generated, an electric wave perpendicular and 

moving in the same direction is also generated. When the electromagnetic wave interacts with 

tissues, its wavelength is decreased, currents are generated in the tissue, and possible reflection 

and refraction of the electromagnetic wave at the interfaces of the tissues may occur [64]. The 

interaction of a material to the electric component in an electromagnetic wave is known as the 

dielectric effect. This effect can lead to dielectric artifacts that cause a pattern of abnormal bright 

and dark spots on the MRI image due to the combination of constructive and destructive 

interference from electric standing waves. Electric standing waves may arise from the electric 

wave entering at two opposite ends of the anatomic region flowing in the opposite direction 

causing the constructive (bright spots) and destructive interference (dark spots) at a quarter 

wavelength apart. To an observer, the interference waves seem to not move in the direction of the 

wave giving them the name of standing waves similar to those produced in a large tank of water 

with ripples or in a microwave. It is still unknown to what degree the dielectric effects have on 

these bright and dark artifacts as the causes and effects of these artifacts in MRI are still not fully 
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understood. However, these artifacts are more common at high magnetic field strengths as the 

wavelength for the radiofrequency pulse is decreased. For magnetic field strengths under 1.5 T, 

the wavelength is larger than the anatomic region imaged, but as the magnetic field strength 

increases, they become the same size or smaller than the anatomic region imaged. The decrease in 

wavelength can generate uneven and observable errors in a sample with insufficient conductivity. 

Soft tissues contain relatively high conductivity compared to pure water due to the electrolyte 

compositions which also dampens the standing wave phenomena. The concentration of 

electrolytes differ between tissues and the tissue conditions also varies causing a range of electrical 

properties in soft tissues. Therefore, to mimic a range of soft tissue electrical properties, tunable 

electrical properties are needed in the phantoms. That can be fulfilled with hydrogels doped with 

various concentrations of additives. However, central brightening has been demonstrated in highly 

conductive phantoms where the dielectric artifacts should be minimal [65]. Due to the complexity 

and the current unknown mechanism of dielectric artifacts, careful control of dielectric properties 

should be warranted with MRI phantoms. 

 

Whereas the conductivity in solids is typically due to a flow of electrons and/or holes, liquids tend 

to have ionic conductivity. Pure water has a very low self-ionization constant (10-14) and is, 

therefore, an insulator with a resistivity of 18 MΩ cm.  More specifically, water is a dielectric: at 

equilibrium with no electric field the water dipoles are orientated randomly, but if exposed to an 

electric field the dipoles will turn to reorient to the electric field, shifting their relative position 

inducing a dipole moment which is called dielectric polarization.  Due to their high-water content, 

hydrogels also tend to be dielectric. The electric properties of a material, including hydrogels, can 

be determined by dielectric spectroscopy [66] which measures the dielectric properties on an 

alternating electric field as a function of angular frequency. To quantify the dielectric material 

property, the relative electric permittivity (also referred to as the dielectric constant) and the 

conductivity are found. Relative electric permittivity is the ability of a material to store electrical 

energy of an electrical field by the polarization of the medium. The relative electric permittivity of 

a material is defined in (2-12) and (2-13).  

εe =  
𝐶

𝐶0
 (2-12) 
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εe =  εe
′ + 𝑖εe” (2-13) 

Where, 

𝐶 = εe ∗ εe,0 ∗
𝐴

𝑑
 (2-14) 

Where C and C0 are the capacitance when filled with the dielectric material or with free space 

respectively, εe,0 is the permittivity of free space at 8.85418782 × 10-12 m-3 kg-1 s4 A2, εeʹ and εeʺ 

represent the real and imaginary components of the permittivity. The real part of the permittivity 

is related to the energy storage of the material and is also known as relative permittivity, whereas 

the imaginary part is related to the energy consumption/dissipation. The permittivity of a material 

is dependent on the applied frequency [66], where the effects are dominated by distinct 

phenomenon at differing frequency ranges [67]. The dielectric spectrometer determines the 

complex permittivity of a material by measuring the complex opposition of current in an 

alternating current (AC) circuit, also known as the impedance. The complex impedance of a 

dielectric material can be modelled by an equivalent electric circuit design. One such design 

contains a resistor and capacitor in series (Figure 2-4) such that the equivalent impedance (Z) is 

defined as (2-15). 

𝑍 = 𝑅𝑥 −
𝑖

𝑤 ∗ εe ∗ 𝑋𝑥
 (2-15) 

Where the real part is representative of the pure resistance (Rx) of the material which consumes 

the electrical energy, and the imaginary part is the reactance (Xx) is represented by a capacitor 

which stores the electrical energy, ω represents the angular frequency measured in rad/s. The 

response over a range of frequencies is then used to measure the complex impedance (schematic 

is shown in Figure 2-4). The schematic shows a waveform generator capable of multifrequency is 

placed in a circuit containing a known resistor R1 in series with a capacitor cell filled with the 

dielectric material. The voltage drop across the entire circuit and the capacitor is measured by an 
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oscilloscope that is phase sensitive. With the two voltages drops known and the phase separation 

between voltages also known, the equivalent circuit impedance can be calculated.  

AC

Ch1  +

Ch2  +
R1 = 10 kOhm

Rx

Xx

Oscilloscope

Z = Rx + jXx

 

Figure 2-4 Dielectric spectrometer setup with an AC waveform generator in series with a known 

resistor (R1) and dielectric material (shaded region) measured with an oscilloscope. The materials 

equivalent circuit design is with both resistance (Rx) and reactance (Xx).  

 

The equivalent circuit calculations shown in Figure 2-5 incorporates the root mean square voltage 

(Vrms) from both channels for the calculations. The Vrms of both channels are found from the peak 

voltage drop across the channels corresponding to VT for the circuit and Vx for the voltage drop 

across the dielectric material as shown by equations (2-17) and (2-18). The values are then 

incorporated into the two sides of a triangle with a separation angle equal to their phase difference 

(φ). 

𝑉𝑟𝑚𝑠 =
𝑉𝑝𝑒𝑎𝑘

√2
 (2-16) 

𝑉𝑇 =
𝑉𝑝𝑒𝑎𝑘,   𝑐ℎ,1

√2
 (2-17) 



www.manaraa.com

23 
 

 
 

𝑉𝑥 =
𝑉𝑝𝑒𝑎𝑘,   𝑐ℎ,2

√2
 (2-18) 

Ground

VT  

Vx  

Vr  Vx,r  

Vx,c   

Imaginary 

Real

Ch1Ch2

 

Figure 2-5 Illustration of the equivalent circuit design calculations with voltage represented as 

side of a triangle in a real-imaginary plane. Channels for the oscilloscope are labeled in red. 

 

Where Vpeak represents the peak voltage. Vrms is the equivalent direct current voltage and its used 

to evaluate the magnitude of the real and imaginary components to represent the total voltage drop. 

Applying the cosine law will result in the third triangle side which is the voltage drop across the 

resistor (2-19). 

𝑉𝑟
2 = 𝑉𝑇

2 + 𝑉𝑥
2 − 2 ∗ 𝑉𝑇 ∗ 𝑉𝑥 ∗ cos(ϕ) (2-19) 

Where the voltages represent the sides of a triangle. With the voltage across the resistor and the 

resistance known the current through the circuit is calculated (2-20). 

𝐼 =
𝑉𝑟

𝑅1
 (2-20) 

The current (I) for all units is equal and therefore the impedance of the entire circuit (ZT) can be 

calculated (2-21). 

𝑍𝑇 =
𝑉𝑇

𝐼
 (2-21) 

And the impedance of the dielectric material is Zx in (2-22), 
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𝑍𝑥 =
𝑉𝑥

𝐼
 (2-22) 

The angle θ in Figure 2-5 can also be calculated with the sine law allowing for the equivalent 

circuit complex impedance to be calculated (2-23). 

𝑍𝑇,𝑟 = cos(θ) ∗ 𝑍𝑇 (2-23) 

Where ZT,r represents the total real part of the impendence of the entire circuit. Since the exterior 

resistor (R1) is known the equivalent resistor of the dielectric material (Zx,r) is then calculated (2-

24). 

𝑍𝑥,𝑟 = 𝑍𝑇,𝑟 − 𝑅1 (2-24) 

The equivalent reactance of the dielectric material (Zx,c) is then (2-25) 

 𝑍𝑥,𝑐
2 = 𝑍𝑥,𝑇

2 − 𝑍𝑥,𝑟
2 (2-25) 

With the equivalent circuit design for the dielectric material known the complex impedance is also 

known allowing for the calculation of the complex permittivity as a function of angular frequency 

(2-26). 

𝜀𝑒(𝜔) =
1

𝑖 ∗ 𝑤 ∗ 𝑍(𝜔) ∗ 𝐶0
 (2-26) 

The conductivity of a dielectric material can be found through (2-27) 

𝜎𝑒(𝜔) = 𝜀𝑒,0 ∗ 𝜀𝑒” ∗ 𝜔  (2-27) 

Where εe” is the imaginary component of the electric permittivity. The dielectric loss tangent or 

dissipation factor can be found by (2-28) which is related to the electric relaxation time of the 

material. 

Tan(δ) =
𝜀𝑒′

εe
″

 (2-28) 

The electrodes used to house the dielectric material may be the source of experimental errors due 

to the polarization of the dielectric material which has been seen in other setups [66]. The 

electrodes are polarized by an electric field when electric charges accumulate on the interface 

between two materials referred to as interfacial polarization [68]. Electrode polarization occurs 

when the charge accumulates at the interface of two electrodes and a dielectric material. If there is 

an imbalance of mobility of mobile charge carriers such as electrons, holes, or ions the more mobile 
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charge carrier may accumulate at their opposing electrode. Due to the electrode polarization and 

the accumulation of charge on the electrode surface, additional electrons may be attracted or 

repelled increasing the charge causing the permittivity of the material to increase. Sufficient time 

is required for charge accumulation electrode polarization to occur. Therefore, at lower frequencies 

polarization of the electrodes becomes more of an issue with an increase apparent permittivity. 

2.2.5  Mechanical properties of tissue equivalent phantoms 

A phantom should sustain external forces to resist deformation under normal operating conditions 

including its shipping and handling. Unlike aqueous phantoms, hydrogels may deform, and 

changes may occur to their properties when subjected to large external force. Additionally, 

hydrogels should not flow to ensure spatial and temporal stability. Further applications for gellan 

gum hydrogels include  mimicking the mechanical properties of tissues for ultrasound imaging 

[69] or other applications such as magnetic resonance elastography [70]. As with MRI, ultrasound 

imaging may benefit from the use of tissue equivalent materials that mimic the viscoelastic 

properties of a tissue. The deformation of a viscoelastic material contains both a viscous and elastic 

behavior with mechanical properties that are dependent on the rate of deformation. These 

properties have been mimicked by hydrogel phantoms with gels formed from gelatin [71], agar 

[72], and high acyl gellan gum gels [8]. These hydrogels have been shown to show similar 

viscoelastic behaviour as tissues but require additives to better mimic tissue behaviour. 

 

Gels may experience blunt compressive forces in its general use requiring sufficient strength to 

absorb the energy without deforming significantly. Similar to most hydrogels, low-acyl gellan gum 

gels are also viscoelastic with the rate of deformation affecting the mechanical properties [6]. The 

amount of deformation is indicated by the engineering strain (εm) seen in (2-29). 

ε𝑚 =
∆𝑙

𝑙
 (2-29) 

Where l and Δl represent the total length of the sample and the deformation of the sample 

respectively. The engineering stress (σm) is measured by the force applied (Fa) divided by the initial 

cross-sectional area perpendicular to the load (A) of the material (2-30) in units of pressure. The 

fracture stress occurs when a material reaches maximum stress and fails. 
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σ𝑚 =
𝐹𝑎

𝐴
 (2-30) 

The compressive modulus of a material is defined by the instantaneous change of stress versus 

strain of a material in units of pressure.  When a material is deformed within its elastic region the 

compressive modulus of the materials is constant. However, viscoelastic materials are dependent 

on strain rate and their moduli is determined by taking this into account according to the following 

equations.  

𝐸 =
∆𝜎𝑠

∆𝜀𝑠
 (2-31) 

𝐸(𝜀𝑠) =
𝑑(𝜎𝑠(𝜀𝑠))

𝑑(𝜀𝑠)
 (2-32) 

The conditions of the hydrogel during the mechanical characterization tests may dictate the 

behaviour. These conditions include whether the hydrogel is constrained in its mold or is taken out 

of the mold for unconstrained compressive analysis or the hydrated state of the hydrogel. During 

constrained tests, the hydrogel is kept in a container to ensure constant cross-sectional area; 

however, the results will be influenced by the container walls and the mechanical properties of the 

container also need to be accounted for. The stress the material faces as the material tends to push 

onto the container will add mechanical stress seen by the actuator increasing the apparent strength 

of the gels. For unconstrained gels, as the mechanical load is applied to the sample the material 

will begin to deform both in direction of load and transversely increasing the cross-sectional area 

as a function of force. This can lead to errors in the stress value calculated as the instantaneous 

cross-sectional area changes. The degree of hydration will impact the mechanical properties of a 

gel as water which helps resists compression. Depending on the state of the hydrogel during its 

intended use, testing the mechanical properties in the dehydrated state may be more appropriate. 

 

As mentioned, various additives have been used to modify the mechanical properties of the gels. 

The most apparent method to modify the mechanical integrity of the hydrogels is to modify the 

concentration of gelling agent or co-gelling agent. The reduction of the gelling agent will reduce 

the gels mechanical integrity up to a minimum value where the hydrogel structure is unstable and 

dissolves in the aqueous solution. Additionally, the gel may still flow even in a gel state due to the 

degradation of mechanical properties meaning temporal instability. However, the increase of 



www.manaraa.com

27 
 

 
 

gelling agent will produce a more crosslinked structure that can reduce the optical transmittance 

of the gel and eventually form inhomogeneities in the gel from uneven gelling. Therefore, the 

optimal mechanical properties of the gel may not be adequate by varying the gelling agent 

concentration alone as a gel too weak to form or too strong gaining heterogenous properties may 

form. Additives for gellan gum phantoms to induce crosslinking are often done with mono- or 

divalent metal salts [6,73], and the effects are dependent on the nature of the cation with divalent 

leading to stronger gels. Due to the anionic structure of gellan gum the addition of a cationic ion 

will induce further aggregation of the order to the double helix gellan gum molecules which stiffen 

the resulting gel [73]. 

2.3  Multifactorial design of experiments 

Multifactorial design of experiments evaluates the effect of individual compositions to the 

hydrogels ability to mimic tissue properties and can obtain tunable properties to match various soft 

tissues. Design of experiment is an effective means to study the effects and interactions of multiple 

variables. Full factorial designs are the simplest form of designs where a certain number of factors 

are varied to another certain number of levels [74]. The most basic form of a design of experiment 

is a 2 factor by 2 level design or 22, and where two parameters are varied at two values, seen in 

Figure 2-6.  
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Figure 2-6 Multifactorial design of experiments with a two factor two level (22) experiment on 

the left and a face centred composite design on the right. Blue circles are for 22, red for the 

intermediate points, green for the centre points. 

 

More generally, a multifactorial design is defined as lk where k is the number of factors and l is the 

number of values. By comparing the results at each combination, the effect of both parameters and 

the interaction of the two can be determined and deemed significant or not. The effect of factor A 

in a 2k is calculated from the difference in means (Contrast) between the high and low levels of a 

factor shown in (2-33) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝐴 = �̅�𝐴+ − �̅�𝐴− (2-33) 

Where �̅�𝐴+ is the mean value at the high concentration of A, and �̅�𝐴− is the mean value at the low 

concentration of A. The interactive effect of factors A and B for a two level two factor design are 

then defined as (2-34) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝐴:𝐵 =
𝐴+𝐵+ + 𝐴−𝐵−

2 ∙ 𝑛
−

𝐴+𝐵− + 𝐴−𝐵+

2 ∙ 𝑛
 (2-34) 

Where A+B+ is the sum of all n repetitions at the high concentrations of both A and B, A-B- is the 

sum of all n repetitions at the low concentrations of both A and B, A+B- is the sum of all n 

repetitions at the high concentrations of A and the low concentration of B, A-B+ is the sum of all n 

repetitions at the low concentrations of A and high concentration of B. However, when translated 
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into a model, the coefficients are defined as the difference in the marginal mean and the overall 

mean. Therefore, the ContrastA is twice the size of the estimated coefficient in the model defined 

in (2-35) for a 22 design, and the relation of contrast to effect is more generally defined as (2-35). 

𝑦𝐴,𝐵 = 𝛽0 + 𝛽𝐴 ∙ 𝑥𝐴 + 𝛽𝐵 ∙ 𝑥𝐵 + 𝛽𝐴−𝐵 ∙ 𝑥𝐴 ∙ 𝑥𝐵 + 𝑒𝑟𝑟𝑜𝑟𝐴,𝐵 (2-34) 

𝐸𝑓𝑓𝑒𝑐𝑡𝐴 = 𝛽𝐴 =
1

2𝑘−1 ∙ 𝑛
∙ 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝐴 (2-35) 

Where yA,B is the measured response, β0  is the predicted value when all compositions are zero, βA, 

βB, and βA-B is the model coefficient also referred to as the effect of A, B, and the interaction 

between A and B respectively, xA and xB are the concentration of A and B respectively, and errorA,B 

is the error component between the measured response and treated means indicating the variation 

not explained by the model. It is assumed that the error follows a normal distribution with a mean 

of zero. The error component also accounts for any effect not modeled whether insufficient design 

or an intentional disregard of effect due to low significance. The significances of the effect are 

determined via ANOVA or a t-test which compares the overall effect of the factor over the square 

root of the estimated variance. 

 

By the addition of intermediate points located between the two current levels a central composite 

design can be generated allowing for the analysis of the quadratic effect and enhancing the variance 

calculations. The location and position relative to the design space of the intermediate points, also 

known as alpha points, determines the type of central composite design. With alpha points equal 

to 1, the values are located on at the centre edges of the design shown in Figure 2-6 and is called 

a face centred design. The general central composite design allows for any nonlinear effects to be 

determined and strengthens the design space analysis. With face centred composite designs, the 

maximum and minimum conditions set initially are not surpassed which is useful for designs with 

specific concentration constraints of individual parameters; furthermore, the design is able to 

accurately predict the conditions set within the entire design space. Additionally, the degree of 

variation can be accounted for with no or few central points where other designs require many 

center points. However, as the points are not equal distance from the centre it is not rotatable 

meaning the variance at each point is not equivalent resulting in less accurate variance calculation. 

The addition of centre points in the middle of the design aids in the variance calculations and the 
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calculation of the quadratic effect of each parameter. A linear regression model can be conducted 

relating the parameters to their effects. ANOVA can be used to determine the significance of each 

coefficients in the regression model. Once the significance is known, the regression model can be 

redone with only the significant coefficients.  

 

A design of experiment can be expanded to include multiple factors raising the number of 

experiments by a degree. Therefore, a two-level three-factor design of experiment (23) requires 

eight compositions for complete analysis seen in Figure 2-7.  

 

Figure 2-7 Example three factor two level (23) design of experiment  
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As more variables are added the degree increases proportionally requiring a large number of 

compositions to be tested. The number of repetitions also scales the number of experiments 

needed, but they increase the accuracy of the variance calculation. Randomizing the compositions 

lessens the influence of any procedural or experimental errors.  

2.4  Summary 

In summary this Chapter provided pertinent literature review to the thesis. These topics were: (i) 

gel-forming materials for MRI phantoms, (ii) MRI imaging principles, (iii) electrical and 

mechanical properties of gels, and (iv) design of experiments. While the information provided in 

this Chapter is not comprehensive, an effort was made to ensure that seminal works and significant 

research findings were included with minimal bias. 
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Chapter 3  

3  Gellan gum-based gels with tunable relaxation properties for 

MRI phantoms*

3.1  Overview 

In this Chapter, the application of gellan gum gels as novel MRI phantom material with tunable 

relaxation properties is described. With gellan gum as the gel-forming material, a transparent, 

thermally stable, simple to fabricate, non-toxic, and tissue equivalent MRI phantom was 

anticipated to provide a useful tool for MRI verification and calibration. Gellan gum gels doped 

with synthesized SPIONs and a choice in T1-modifier with either MnCl2 or GdCl3 at varying 

concentrations were prepared. Scans from 230 μT to 3 T were conducted determining the 

concentration effect of each contrast and inspect the magnetic field strength dependency of the 

contrast agents in a gel environment. The synthesis of SPIONs from a singular metal salt in a 

precipitation reaction are described. Nineteen gel samples were formulated with varying 

concentrations of contrast agents to determine the linear, quadratic, and interactive effects of the 

contrast agents by a central composite design of experiment. The use of various concentrations of 

metal salts and SPIONs enabled a range of relaxation times that could be used to model human 

tissue for a known magnetic field strength. Furthermore, the effect of temperature on the relaxation 

rates of the prepared gels was investigated. The model containing SPIONs and metal salts 

relaxivity was analyzed with ANOVA, and the resulting significant coefficients were tabulated. 

The gel material maintained physical, chemical, and biological stability for at least four months 

and contained controllable relaxation properties while maintaining optical clarity.  

3.2  Methodology 

3.2.1  Nanoparticle preparation and characterization 

SPIONs were prepared by a modified co-precipitation method using a singular iron salt [1]. 

Briefly, 1.4 g of iron(II) sulphate heptahydrate (Sigma Aldrich, Canada) was dissolved in 50 mL 

                                                           
* A version of this Chapter is published: Pawel Brzozowski, Kalin I. Penev, Francisco M. Martinez, Timothy J. 

Scholl, and Kibret Mequanint. Gellan Gum-based Gels with Tunable Relaxation Properties for MRI Phantoms. 

Magnetic Resonance Imaging. 57, 40-49; 2019 
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of deionized water at 40 ºC for 30 min while stirring. Next, the iron salt solution was heated to 70 

°C and 20 mL of 25 % ammonium hydroxide (Caledon Laboratories, Canada) was added while 

continuously stirring with an overhead stirrer. The increased pH-triggered precipitation of iron 

oxide particles. To ensure a complete reaction, the basic ferrous suspension was heated for 90 min 

at 90 °C while continuously stirring. Once complete, the mixture containing nanoparticles was 

cooled to room temperature before being magnetically decanted, separating the iron oxide 

nanoparticles from the bulk liquid. The separated iron oxide nanoparticles were purified three 

times by washing with 30 mL deionized water, centrifugation, and decanting. The separated 

SPIONs were dried under vacuum for 24 h. A suspension of SPIONs was prepared in distilled 

water at a concentration of 0.5 g/L and ultrasonicated before use. A Philips CM 10 transmission 

electron microscope (TEM) with magnification 18x to 450,000x, resolution 0.5 nm (point) or 0.34 

nm (line), and voltage 40 kV to 100 kV was used to determine morphology and size of the SPIONs. 

The size distribution was determined by estimating the diameters of 421 particles using ImageJ. 

X-ray Diffraction (XRD) (MiniFlex-Rigaku, The Woodlands, TX) analysis investigated the 

crystallite structure and the crystalline size (at 2-theta from 20 to 70o at 0.02 step size, 40 kV x-

ray). From the XRD the average crystallite size was estimated by the Scherrer equation  

1/2

0.94

cos
pD



 
=  (3-1) 

Where Dp represents the average crystallite size, 1/2 represents the line broadening in radians or 

the full width half maximum, θ represents the Bragg angle, and λ represents the x-ray wavelength. 

The magnetic properties of the dried SPIONs were analyzed with a vibrating sample magnetometer 

(VSM 7407) (Lake Shore cyrotonics, Westerville, OH). The dried powdered SPIONs were 

characterized at moment measure range of 10-10 to 1 J/T (10-7 to 103 emu) at room temperature and 

up to a maximum field of 1T (10kOe). The saturation magnetism, coercivity, and retentivity were 

determined and compared to literature values. Fourier-transform infrared spectroscopy (FTIR) 

(Bruker Vector 22 FTIR spectrometer) was used to confirm the synthesis of iron oxide and the 

purity. Small volumes of the dried powder SPIONs were scanned by an attenuated total reflectance 

(ATR) between 4000 - 500 cm-1 with a 4 cm-1 resolution and 32 total scans and was controlled by 

OPUS 5.1 analytical software.  
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3.2.2  Gellan gum gel preparation 

Gellan gum gels preparation followed similar protocol as the previous publication of gellan gum 

gels used as tissue equivalent materials for radiation dosimetry [2]. As a biopolymer, gellan gum 

is susceptible to bacterial growth, so methyl 4-hydroxybenzoate (methylparaben)  and propylene 

glycol were utilized as preservatives instead of the more common sodium azide which is 

undesirable due to its human toxicity [3]. Methyl 4-hydroxybenzoate is an antiseptic used in 

pharmaceuticals, and a preservative in the food industry [4] and propylene glycol also exhibits 

antibacterial properties [5] while aiding in the homogeneity and stability of the gel.  To prepare 

the gels (per 100 mL): 1.25 g gellan gum powder (Alfa Aesar, USA) and 100 mg methyl 4-

hydroxybenzoate (Sigma Aldrich, Canada) were added into 10.0 mL propylene glycol (Caledon 

Laboratories, Canada) to solvate the powders. Deionized water (52.5 mL) was then added with 

vigorous mixing at room temperature in order to disperse the powder. The resulting suspension 

was heated until complete dissolution. The transparent gel solution was cooled to 55 °C and mixed 

with the SPION solution and the metal salt solutions of gadolinium(III) chloride hexahydrate 

(GdCl3·6H2O) (Alfa Aesar, USA) or manganese(II) chloride tetrahydrate (MnCl2·4H2O) (Sigma 

Aldrich, Canada), and deionized water to the final volume. To form homogenous gel structures 

with the highly cationic gadolinium ions and avoid the crosslinking of the anionic gellan gum, 

diethylenetriaminepentaacetic acid (DTPA) (Sigma Aldrich, Canada) was used to chelate the 

gadolinium ions in 2% molar excess. The final gel composition contained 1.25% (w/v) gellan gum, 

10% (v/v) propylene glycol for anti-bacterial properties and spatial stability, 7.55 mM methyl 4-

hydroxybenzoate as an antiseptic; synthesized SPIONs (0-30 ppm) as T2 modifiers; GdCl3 (0 – 

140 µM) or MnCl2 (0 - 40 µM) as T1 modifiers; DTPA (0 - 142.8µM) to stabilize the GdCl3. The 

gel formulations were poured either into NMR glass tubes (10 mm diameter, 230 mm length) for 

NMR and MRI measurements shown in Figure 3-1 or into 4 mL poly(methyl methacrylate) 

(PMMA) cuvettes for optical scans. Optical scans studying the SPION distributions in the gels 

were performed along the height of PMMA cuvettes using a microplate reader (Infinite 200 Pro, 

Tecan Group Ltd., Switzerland), equipped with a horizontal cuvette adaptor. Tecan i-control 

software (Tecan Group Ltd., ver. 1.7.1.12) was used to define a custom plate to take optical 

readings at 500 nm at thirteen points (1.982 mm apart) along the long axis of the cuvette [6] over 

a six-week period. As an internal control, fast green FCF dye (Sigma Aldrich, Canada) at 10 µg 
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dye per 1 mg metal salt was added to enable the optical density of each sample to be dependent on 

the metal salt concentration allowing internal tracking through optical scans.  

 

Figure 3-1 Gel samples in NMR glass tubes  

 

3.2.3  Design of experiments and statistical analyses 

To obtain tunable relaxation times for various human tissues, designs of experiments were 

implemented independently for both metal salts to predict the relaxation times of the samples based 

on the concentration of the contrast agents. A central composite design of experiment was chosen 

due to its simplicity and ability to determine the quadratic, linear, and interactive effects of the 

contrast agent concentration on the relaxation properties in the regression model. Initially, each 

design contained four points at two concentrations of SPIONs and metal salt [7]. The design was 

augmented with four intermediate points making a central composite design as shown in Figure 2-

6 (Chapter 2.3). Furthermore, three centre points in the middle of the design space were used to 

analyze the variance of prediction and to aid the quadratic effect analysis. In total, 11 compositions 

were required for the design of experiments with each metal salt. The design order was randomized 

to ensure consistency as can be seen in Tables 3-1 and 3-2. With the data generated, the relaxation 

times were fitted to the concentration of SPIONs, metal salts, and the interaction between the 

contrast agents using the statistics program R (version 3.4.3; Vienna, Austria) regression analysis. 

ANOVA analyses were conducted to determine the significance of the coefficients in the 

regression models, and the models were refined with only the significant effects [7].  
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Table 3-1 MRI additives concentrations coded at three levels, 

  
Levels 

Coded 
 

-1 0 1 

SPIONs ppm 0 15 30 

MnCl2 µM 0 20 40 

GdCl3-DTPA µM 0 70 140 

 

Table 3-2  Coded central composite design of experiment composition list 

# Order SPION MnCl2 GdCl3-DTPA 

1 6 -1 -1 -1 

2 5 1 -1 -1 

3 3 -1 1 -1 

4 2 1 1 -1 

5 1 0 0 -1 

6 4 0 0 -1 

7 7 0 0 -1 

8 8 -1 0 -1 

9 10 1 0 -1 

10 9 0 -1 -1 

11 11 0 1 -1 

12 15 -1 -1 1 

13 13 1 -1 1 

14 12 0 -1 0 

15 14 0 -1 0 

16 16 0 -1 0 

17 18 -1 -1 0 

18 19 1 -1 0 

19 17 0 -1 1 
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3.2.4  NMR and MRI measurements 

T1 relaxation times were acquired at low magnetic fields from 230 µT to 1 T on a fast field-cycling 

NMR relaxometer (SpinMaster FFC2000 1T C/DC, Stelar, s.r.l., Mede, Italy) by changing the 

relaxation field in 30 steps, logarithmically distributed using an acquisition field of 380.5 mT. The 

measurements were conducted at three different temperatures in the relaxometer (20 °C, 25 °C, 

and 30 °C) to study the effects of temperature on the relaxation properties of each contrast agent 

in the gel. For higher field strengths, T1 and T2 weighted MRI images were acquired in a plane 

transverse to the cylindrical axis of the NMR tubes (coronal plane of the scanner) for three adjacent 

10-mm-thick slices on a 1.5-T GE CVMR and a 3.0-T GE Discovery MR750 clinical scanners 

(General Electric Healthcare, Milwaukee, WI, USA) at room temperature (25 °C). Any 

misalignment among the slices was assessed and remedied during image reconstruction using the 

image registration tools of MATLAB (version 9.3, MathWorks, Inc., Natick, MA). In addition, 

edge and partial-volume effects of the air-glass-gel interface were assessed by eroding the 

boundaries of the region of interest (ROI) drawn around the gel in each test tube (see Appendices 

A and B). T1 measurements were obtained using an Inversion Recovery Fast Spin Echo pulse 

sequence with 15 inversion times (TI) logarithmically distributed between 50 and 4000 ms. Other 

imaging parameters include repetition time (TR)=10 s, Echo time (TE)=6.5 ms, Echo Train Length 

(ETL)=4, slice thickness (THK)=10 mm, Field of view (FOV)=130×130 mm, matrix size of 

256×256 points, and receive Bandwidth (BWr) of 125 kHz. T2 measurements were estimated using 

a Spin Echo Multi-Echo pulse sequence with 62 different echo times covering a range from 9 ms 

to 480 ms, TR=2000 ms, THK=10 mm, BWr=83.3 kHz, with a matrix of 256×256, 

FOV=130×130mm (a representative data set and curve fit is shown in Appendix C). The signal 

intensity as a function of inversion time for the stack of images was analyzed on a pixel-by-pixel 

basis to give the T1 and T2 relaxation times of the samples. MATLAB was used to generate non-

linear fits for each pixel to defined by the following equations: 

𝑆𝐼,1 =  𝐾 · (𝑀0 − (𝑀0 − 𝑀𝑧(0)) · 𝑒
(−𝑇𝐼

𝑇1
⁄ )

) (3-2) 

𝑆𝐼,2 =  𝐾 · 𝑀𝑥𝑦 · 𝑒
(−𝑇𝐸

𝑇2
⁄ )

+ 𝑛𝑜𝑓𝑓 (3-3) 

Where SI,1 and SI,2 are the measured signal intensity, M0 is the steady state longitudinal 

magnetization at thermal equilibrium, Mz(0) is the magnitude of the inverted magnetization 

acquired during the readout, Mxy is the transverse magnetization, K is a constant from 
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magnetization into signal voltage, and noff is any offset noise present on the images. M0, Mz(0), 

Mxy, T1, and T2 are found in the fitting. 

3.3.  Results and discussions 

3.3.1  Particle-size analysis, magnetic properties, and in-gel stability of SPIONs 

The prepared SPIONs characterization results are shown in Figure 3-2. The TEM image (Figure 

3-2a) demonstrated that the SPIONs had agglomerated on the TEM sample grid due to electrostatic 

interactions in the neutral aqueous environment during the drying process. Embedded in the TEM 

image is the corresponding particle-size distribution histogram which displayed the average size 

to be 6.6 nm. A positive skew from a normal distribution indicated the formation of large sized 

particles. The magnetic properties of the synthesized SPIONs are shown in Figure 3-2b where the 

magnetization curve indicated their superparamagnetic nature with minimal hysteresis from the 

near-zero coercivity and retentivity. The saturation magnetism of 77.24 A·m2/kg (emu/g) is lower 

than the bulk magnetism of magnetite but is similar to that of other reported SPIONs [8]. The 

lower saturation magnetism could be accounted for by the large distribution in particle size 

confirmed by the TEM image and by the production of diamagnetic iron oxide minerals 

influencing the overall magnetic field. The nonzero retentivity (7.05 A·m2/kg [emu/g]) and 

coercivity (5.636 mT [56.36 G]) shown by magnifying the origin in Figure 3-2c also indicates the 

non-uniform size distribution of the SPIONs and formation of other iron oxide minerals. However, 

the concentration of diamagnetic iron structures is expected to be minimal since the XRD 

diffraction peaks show no indication of other mineral structures. The XRD results confirm the 

formation of iron oxide particles (Figure 3-2d) showing six diffraction rings (peaks) corresponding 

to the formation of the SPION structure. With the largest diffraction ring, the Scherrer equation 

(Eq. (3-1)) estimated the average crystalline size to be 27.5 nm. At this size, the SPIONs are 

superparamagnetic [8]. The difference in average size estimation between the TEM and XRD may 

be explained by the positive skew in the histogram indicating the formation of larger particles. 

FTIR also confirmed SPION formation seen in Appendix D. The distribution of the SPIONs in the 

gel with or without metal salts was studied by optical scans as shown in Figure 3-2e and 3-2f. The 

data indicated an even distribution of the SPIONs with no evidence of settling within the six-week 

period. The wavelength of 500 nm was chosen to avoid the effect of the FCF dye which does not 

absorb around 500 nm. Figure 3-2e contains the average optical density of the entire cuvette as a 
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solid line to illustrate the SPION distribution around its mean. The SPION distribution optical 

density profile is not significantly different from the average line, and the variation can be 

explained by inhomogeneities in the cuvette. Even after six weeks at room temperature, the average 

optical density did not change significantly. This is further supported by Figure 3-2f where the 

optical density of each composition is not different from the average. Collectively, Figure 3-2e 

and 3-2f demonstrate that no change is seen in the spatial stability of the gel over the tested period 

for any of the compositions. 
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Figure 3-2 Characterization of SPIONs. (a) TEM image illustrating the size of the dried SPIONs. Included is a particle 

size distribution histogram. (b) Superparamagnetic properties of SPIONs. (c) Axis magnified displaying coercivity 

and retentivity values. (d) XRD spectrum of SPION particles. (e) Optical scans normalized to the base gel 

demonstrating the distribution of SPIONs in a gel at two time points indicated by “square” for the initial scans and 

“circle” for 44 days. Done in triplicates and plotted with average value lines. (f) Optical scans for temporal analysis 

of base gel (“square”) points, SPION (“circle”), SPION-Mn (“diamond”), and SPION-Gd (“triangle”) doped gels in 

triplicates and plotted with average value lines. 
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3.3.2  Relaxation properties of SPION and metal salts doped gel phantoms 

The effect of varying magnetic field strength on the R1 relaxation rate is plotted in Figure 3-3 for 

different gel compositions. Compared to the base gel (no SPIONs), the concentration of SPIONs 

(30 ppm and 15 ppm) had no effect on R1 relaxation rate for all investigated magnetic field 

strengths (Figure 3-3a) suggesting that neither the presence of SPIONs nor their amount influenced 

the R1 relaxation rate. However, the R1 relaxation rates decreased for all the samples as the 

magnetic field strength increased before reaching a plateau at approximately 0.1 T. This decrease 

is likely caused by the higher mobility of the water protons in the gelled environment with an 

increased magnetic field. Figure 3-3b presented the effect of MnCl2 concentration on the R1 

relaxation rates at a constant SPIONs concentration (30 ppm). At a fixed magnetic field strength, 

increasing MnCl2 resulted in an increased R1, as expected. Below 0.05 T, the R1 profile follows a 

similar trend for all three samples. Above 0.05 T, MnCl2 increased the relaxation rate greatly 

before reaching a maximum around 0.5 T, indicating that the gellan gum phantom material with 

MnCl2 exhibited noticeable differences in relaxation rate when scanned at different magnetic field 

strengths. Figure 3-3c revealed that while GdCl3 increased R1 in a concentration-dependent 

manner, its effect did not pass through a minimum and maximum points. Again, the concentration 

of SPIONs in the GdCl3 samples was kept constant (30 ppm). Below 0.01 T, the relaxation rate 

becomes more dependent on magnetic field strength with the relaxation rates increasing more 

rapidly than those of the base gel. 
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Figure 3-3 The effect of magnetic field strength at different concentration of contrast agents on 

relaxation rates (R1), log-normal scale. (a) SPIONs, (b) MnCl2 at 30 ppm SPIONs, and (c) GdCl3 

at 30 ppm SPIONs. Legend: “square” high concentration of contrast agent, “circle” medium 

concentration, and “triangle” low concentration. 

 

Figure 3-4 presented the metal salt effect on both R1 and R2 relaxation rates for different SPION 

concentrations at clinically relevant magnetic field strengths. The slopes in Figure 3-4(a, b, d, and 

e) represent the relaxivity of the metal salt at the indicated field strength and SPION concentration. 

The R1 relaxivity of MnCl2 is more strongly dependent on magnetic field strength than on the 

SPION concentration. The dependency of field strength causes the relaxivity of MnCl2-containing 

gels to vary considerably, indicating that a unique model at each magnetic field strength is required 

to have accurate relaxation properties. Figure 3-4b shows the R2 relaxation rate at 1.5 T and 3 T 

for MnCl2-containing gels. Similar to the R1 relaxation rate, the R2 relaxation rate is also dependent 

on magnetic field strength; however, the dependency is minor compared to the SPIONs 

concentration effect. Overall, adding SPIONs affected the R2 relaxation rate while R1 relaxation 

rate was unchanged, allowing an independent control of the two relaxation properties. Figure 3-4c 

represents the T1–T2 design space map for MnCl2 and SPIONs containing gels at 1.5 T. Each point 

represents a scanned sample and its corresponding T1 and T2 values with a total of nine distinct 

concentrations. The solid line indicates an iso-metal salt concentration and the dashed line 
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represents iso-SPIONs concentrations. Reported human tissue relaxation times [9] are 

superimposed to the design space to illustrate how they fit into the design space. Tissue relaxation 

data plotted were colour-coded to indicate the specific tissues. Since the reported relaxation times 

included both healthy and pathological tissues, there is a scatter around the design space even for 

a specific tissue (e.g. brain tissue). The longer relaxation times seen typically in more aqueous 

tissues exist near the boundary of the design space seen by the cluster of data for brain tissues. 

Shown in Figures 3-4(d–f) are the GdCl3 and SPIONs containing samples at eight distinct 

concentrations. Figure 3-4d plots the R1 relaxation rate and the relaxivity of the GdCl3. Both the 

magnetic field strength and the SPIONs concentrations effects are minor in contrast to the MnCl2 

plots where the magnetic field strength was the dominant effect. This result is corroborated in 

literature which showed stronger dependence on the field strength for the relaxivity induced by 

manganese-based contrast agents over gadolinium [10]. The R2 relaxation rates for the GdCl3 

samples are plotted in Figure 3-4e, and again the metal salt concentration increases the R2 

relaxation rate. The results are comparable to MnCl2 with the SPIONs concentration having a more 

substantial influence on R2 relaxation rate than magnetic field strength. Samples with no SPIONs 

have higher R2 relaxation rates at larger magnetic field strengths (3 T), but when SPIONs are 

introduced and their concentration is increased a larger relaxation rates is observed at 1.5 T. 

Therefore, the effect of SPIONs on the R2 relaxation rate is also dependent on magnetic field 

strength. Similar to MnCl2, a design space map for GdCl3 samples is plotted at 1.5 T in Figure 3-

4f with the same known human tissue relaxation times. Strong dependency of the MnCl2-induced 

relaxivity on the magnetic field strength and temperature has been previously reported [9]; 

however, the GdCl3-induced relaxivity is less sensitive to field strength and temperature making it 

more attractive. Nevertheless, GdCl3 has other disadvantages including environmental and health 

concerns when preparing, handling and disposing [11,12]. Furthermore, the relaxivity induced by 

GdCl3 is lower than MnCl2 requiring higher concentrations of the metal salt for similar relaxation 

rates. 
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Figure 3-4 Relaxivity of the gellan gum gels at varying contrast agent concentrations and magnetic field strengths. 

(a) R1 relaxation rate for MnCl2 concentration with the effects of SPION indicated by the line-type (“solid” is 0 ppm, 

“dashed” is 15 ppm, “dotted” is 30 ppm) and field strength indicated by the colour or the point shape (black “open-

square” is 3 T, red “open-circle” is 1.5 T, purple “filled-square” is 1 T, and blue “filled-circle” is 0.75 T. (b) R2 

relaxation rate versus the MnCl2 concentration with the effects of SPION indicated by line-type and by point shape 

(“solid line and square” is 0 ppm, “dashed line and circle” is 15 ppm, “dotted line and triangle” is 30 ppm) and the 

field strength is indicated by the colour or point fill (black “open point” is 3 T and red “filled point” is 1.5 T). (c) T1-

T2 map for MnCl2 at 1.5 T where each “solid” point represents a concentration tested, “solid” lines represent iso-metal 

salt concertation, and “dashed” lines represent iso-SPION concentration. “square” points represent known relaxation 

times for various human tissues indexed by tissue type by colour. Error bars are indicated in red. (d) R1 relaxation rate 

versus the GdCl3 concentration with the effects of SPION and the field strength. (e) R2 relaxation rate versus the GdCl3 

concentration with the effects of SPION and the field strength. (f) T1-T2 map for GdCl3 at 1.5 T. 
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3.2.3  The effect of temperature and time on relaxation properties 

To determine the effect of temperature, R1 relaxation rates were measured at three temperatures 

(20 °C, 25 °C, and 30 °C) for three gel compositions (40 μM MnCl2, 30 ppm SPIONs + 40 μM 

MnCl2, and 140 μM GdCl3) as shown in Figure 3-5a–c, respectively. The results indicate that 

temperature does have some effect on the relaxation properties of the gellan gum gel phantom 

regardless of contrast agent. As the temperature is decreased, the relaxation rates increased 

slightly, which is a typical response for gel phantoms [13]. Here, this trend was not dependent on 

the type of contrast agent chosen. As a further analysis of MRI signal stability, a set of samples 

were re-scanned after six weeks of storage at room temperature. Samples containing the same 

composition as the temperature study were measured but only the sample containing 30 ppm 

SPIONs and 40 μM MnCl2 is shown in Figure 3-5d as it was hypothesized to change the most with 

time containing both SPIONs and MnCl2. All tested composition gave similar results, and after six 

weeks of storage the R1 relaxation profile is similar, but a slight increase in relaxation rates 

occurred. Further analysis is shown in Figure 3-5e where the relaxation rates at the two time points 

are compared against each other in a comparison plot where R1,i¸ represents the initial scans and 

R1,f represents the scans after six weeks. A slight increase in relaxation rates occurs with time 

shown by the slope of 1.02 instead of 1.00, however, a linear relation exists (R2=0.9988) between 

the results. The increase of relaxation rates may be explained by the loss of water from the gel, 

which can be prevented by careful sealing. 
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Figure 3-5 The effect of temperature on NMR R1 relaxation rate for gellan gum phantoms. (a) 

MnCl2, (b) SPION-MnCl2, and (c) GdCl3 as indicated: legend is: “square” for 20 °C, “circle” for 

25 °C, and “triangle” for 30 °C). (d) Temporal analysis of R1 relaxation rate initially “square” and 

after six weeks “circle”. (e) Comparison plot of the initial relaxation rates and after six weeks. 

 

3.2.4  Tunable Relaxation Rates 

The central composite design was fitted to the following equation to estimate the base, linear, 

quadratic, and interaction concentration effects at varying field strengths for a constant temperature 

of 25 °C. 
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𝑅𝑖,𝑗 = 𝑎𝑖,𝑗,0 + 𝑎𝑖,𝑗,1 · 𝐶𝑚,𝑗 + 𝑎𝑖,𝑗,2 · 𝐶𝑆 + 𝑎𝑖,𝑗,3 · 𝐶𝑚,𝑗
2 + 𝑎𝑖,𝑗,4 · 𝐶𝑆

2  +

          +  𝑎𝑖,𝑗,5 · 𝐶𝑚,𝑗 · 𝐶𝑆    
(3-4) 

Where Ri,j represents either longitudinal (R1; i = 1) or transverse (R2; i = 2) relaxation rates with j 

being 1 for MnCl2 and 2 for GdCl3; ai,j,k represents the best fit coefficients shown in Table 3-3 to 

3-6 with k corresponding to the type of effect (base, linear metal salt, linear SPIONs, quadratic 

metal salt, quadratic SPIONs, or interactive for 0, 1, 2, 3, 4, or 5 respectively); Cm,j is the 

concentration of metal salt; and CS is the concentration of SPIONs. Using ANOVA, the 

significance (p < 0.05) of each coefficient to predicting the relaxation rate was evaluated. For R1, 

the linear effect of the metal salts was significant at all field strengths. While, the linear SPION 

effect was significant at 1.5 and 3 T and loses significance at lower field strengths. The quadratic 

effect of the metal salt was significant between 0.75 and 1 T but loses significance at higher or 

lower field strengths. The quadratic effects of the SPION concentration and the interaction of the 

SPION to either metal salt were not significant. With the significance of each parameter known, 

the linear regression was repeated with the significance terms only. The p-values showing the 

significance of each term is shown in Appendices E to H. The results can be seen in Table 3-3 for 

MnCl2 and Table 3-5 for GdCl3. The adjusted R2 values of the linear regressions indicate an 

excellent fit at all field strengths for MnCl2 (>0.994) and GdCl3 (>0.97). Adjusted R2 value 

compares the explanatory power of the regression model to the number of parameters used. This 

way only parameters that are useful in predicting the relaxation rate increase the accuracy of the 

model. Therefore, the adjusted R2 values for both metal salts indicated that the model was able of 

accurately predicting the R1 relaxation rates within the design space for all magnetic field strength 

tested. For R2, the base and linear effects for both metal salts and SPIONs were significant at the 

field strengths tested. The quadratic concentration effect of the SPIONs was significant with the 

GdCl3 model while not significant with the MnCl2 model. The quadratic effect of the metal salt 

and the interaction effect of the SPION to either metal salt were not significant. As with R1, the 

linear regression was repeated accounting for significance terms and are shown in Table 3-4 for 

MnCl2 and Table 3-6 for GdCl3. Again, the adjusted R2 values indicates a good fit for the GdCl3 

model (>0.978). The adjusted R2 values for the MnCl2 fit was lower (>0.87) but still a reasonable 

fit. With either set of equations, tunable relaxation properties can be targeted and achieved. Even 

with the 11 and 10 samples for MnCl2 and GdCl3 respectively, the model was accurate showing 

the benefit of using a design of experiments. The choice of central composite design allowed 
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further analysis into the quadratic effects which were important especially for the R2 relaxation 

rates. The design space was limited by the lower limits of the relaxation rate of the base gel 

indicated in Figure 3-4c and 3-4f, where the gellan gum sample would not be able to model the 

tissues relaxation properties. This limitation restricts gellan gum samples from mimicking liquids 

within tissues or tissues with long relaxation times. 

Table 3-3 Coefficient for longitudinal relaxation rates (R1) equation for MnCl2 at all field strengths tested. 

(ns) indicate not significant with p-value > 0.05.  

Field Strength 
a1,1,0 a1,1,1 a1,1,2 a1,1,3 a1,1,4 a1,1,5 

 

Adjusted-R2 

(s-1) (µM · s)-1 (ppm · s)-1 (µM-2 · s-1) (ppm-2 · s-1) (µM · ppm · s)-1   

3 0.62 ± 0.02 0.0397 ± 0.0005 0.0028 ± 0.0007 (ns) (ns) (ns) 

 

0.998 

1.5 0.68 ± 0.03 0.0795 ± 0.0009 0.0038 ± 0.0012 (ns) (ns) (ns) 

 

0.998 

1.0009 0.71 ± 0.13 0.1116 ± 0.0097 (ns) 0.00097 ± 0.00023 (ns) (ns) 

 

0.995 

0.75691 0.76 ± 0.08 0.1497 ± 0.0062 (ns) 0.00042 ± 0.00015 (ns) (ns) 

 

0.998 

0.56715 0.76 ± 0.04 0.1719 ± 0.0015 (ns) (ns) (ns) (ns) 

 

0.999 

0.42505 0.78 ± 0.03 0.1603 ± 0.0012 (ns) (ns) (ns) (ns) 

 

0.999 

0.31851 0.79 ± 0.03 0.1399 ± 0.0013 (ns) (ns) (ns) (ns) 

 

0.999 

0.23863 0.71 ± 0.04 0.1169 ± 0.0015 (ns) (ns) (ns) (ns) 

 

0.998 

0.17885 0.73 ± 0.03 0.0998 ± 0.0011 (ns) (ns) (ns) (ns) 

 

0.998 

0.13403 0.73 ± 0.02 0.0868 ± 0.0008 (ns) (ns) (ns) (ns) 

 

0.999 

0.10049 0.77 ± 0.02 0.0749 ± 0.0007 (ns) (ns) (ns) (ns) 

 

0.999 

0.075277 0.79 ± 0.01 0.0689 ± 0.0006 (ns) (ns) (ns) (ns) 

 

0.999 

0.056393 0.84 ± 0.03 0.064 ± 0.0011 (ns) (ns) (ns) (ns) 

 

0.996 

0.042268 0.89 ± 0.02 0.0636 ± 0.001 (ns) (ns) (ns) (ns) 

 

0.997 

0.031677 0.95 ± 0.02 0.0667 ± 0.0008 (ns) (ns) (ns) (ns) 

 

0.998 

0.023729 1.03 ± 0.02 0.0698 ± 0.0008 (ns) (ns) (ns) (ns) 

 

0.998 

0.017795 1.12 ± 0.02 0.0732 ± 0.0009 (ns) (ns) (ns) (ns) 

 

0.998 

0.013326 1.22 ± 0.03 0.0759 ± 0.0012 (ns) (ns) (ns) (ns) 

 

0.997 

0.009985 1.33 ± 0.03 0.0789 ± 0.0012 (ns) (ns) (ns) (ns) 

 

0.997 

0.00748 1.46 ± 0.02 0.0807 ± 0.0008 (ns) (ns) (ns) (ns) 

 

0.999 

0.0056074 1.59 ± 0.02 0.0817 ± 0.0008 (ns) (ns) (ns) (ns) 

 

0.999 

0.0042075 1.72 ± 0.02 0.0838 ± 0.0009 (ns) (ns) (ns) (ns) 

 

0.998 

0.0031574 1.9 ± 0.02 0.0833 ± 0.0008 (ns) (ns) (ns) (ns) 

 

0.998 
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Table 3-4 Coefficient for transverse relaxation rates (R2) equation for MnCl2 at all field strengths tested. (ns) 

indicate not significant with p-value > 0.05  
 

 

Table 3-5 Coefficient for longitudinal relaxation rates (R1) equation for GdCl3 at all field strengths tested. (ns) 

indicate not significant with p-value > 0.05.  

0.0023638 2.06 ± 0.03 0.0846 ± 0.0012 (ns) (ns) (ns) (ns) 

 

0.998 

0.0017659 2.25 ± 0.03 0.0841 ± 0.0011 (ns) (ns) (ns) (ns) 

 

0.998 

0.0013252 2.38 ± 0.04 0.09 ± 0.0024 0.0025 ± 0.001 -0.00014 ± 0.00006 (ns) (ns) 

 

0.999 

0.00099331 2.75 ± 0.03 0.0837 ± 0.0011 (ns) (ns) (ns) (ns) 

 

0.998 

0.00074206 3.01 ± 0.03 0.0839 ± 0.0012 (ns) (ns) (ns) (ns) 

 

0.998 

0.00055583 3.27 ± 0.04 0.0854 ± 0.0015 (ns) (ns) (ns) (ns) 

 

0.997 

0.00041615 3.57 ± 0.04 0.0851 ± 0.0016 (ns) (ns) (ns) (ns) 

 

0.997 

0.00031372 3.85 ± 0.04 0.092 ± 0.0025 0.0034 ± 0.0011 -0.0002 ± 0.00006 (ns) (ns) 

 

0.999 

0.00023315 4.39 ± 0.05 0.0855 ± 0.0022 (ns) (ns) (ns) (ns) 

 

0.994 

Field Strength 

a
2,1,0

 a
2,1,1

 a
2,1,2

 a
2,1,3

 a
2,1,4

 a
2,1,5

   Adjusted-R
2
 

 (s
-1

) (µM
 
· s)

-1
  (ppm · s)

-1
 (µM

-2
 · s

-1
)  (ppm

-2
 · s

-1
) (µM · ppm · s)

-1
   

3 12.1 ± 1.5 0.27 ± 0.05 0.44 ± 0.06 (ns) (ns) (ns) 

 

0.889 

1.5 10.7 ± 1.7 0.23 ± 0.05 0.5 ± 0.07 (ns) (ns) (ns) 

 

0.87 

Field Strength 

a
1,2,0

 a
1,2,1

 a
1,2,2

 a
1,2,3

 a
1,2,4

 a
1,2,5

   Adjusted-R
2
 

 (s
-1

) (µM
 
· s)

-1
  (ppm · s)

-1
 (µM

-2
 · s

-1
)  (ppm

-2
 · s

-1
) (µM · ppm · s)

-1
   

3 0.61 ± 0.02 0.0057 ± 0.0002 0.0023 ± 0.001 (ns) (ns) (ns) 

 

0.99 

1.5 0.66 ± 0.03 0.0051 ± 0.0002 0.0029 ± 0.0012 (ns) (ns) (ns) 

 

0.98 

1.0009 0.71 ± 0.03 0.0031 ± 0.0005 (ns) 0.000009 ± 0.000004 (ns) (ns) 

 

0.987 

0.75691 0.76 ± 0.03 0.0029 ± 0.0006 (ns) 0.000011 ± 0.000004 (ns) (ns) 

 

0.985 

0.56715 0.77 ± 0.02 0.0046 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.972 

0.42505 0.78 ± 0.02 0.0049 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.975 

0.31851 0.77 ± 0.02 0.0053 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.978 

0.23863 0.74 ± 0.03 0.0039 ± 0.0006 (ns) 0.00001 ± 0.000004 (ns) (ns) 

 

0.988 

0.17885 0.73 ± 0.02 0.0057 ± 0.0002 (ns) (ns) (ns) (ns) 

 

0.985 

0.13403 0.74 ± 0.02 0.0061 ± 0.0002 (ns) (ns) (ns) (ns) 

 

0.987 
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Table 3-6 Coefficient for transverse relaxation rates (R2) equation for GdCl3 at all field strengths tested. (ns) 

indicate not significant with p-value > 0.05 

 

3.2.5  NMRD relaxivity modelling 

The relaxivity dependency to magnetic field strength was plotted on nuclear magnetic relaxation 

dispersion (NMRD) profiles for each metal salt at 25 °C in the gellan gum gel environment in 

Figure 3-6. Plotting the linear effect from either metal salt to the magnetic field strengths generates 

0.10049 0.75 ± 0.03 0.0065 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.982 

0.075277 0.79 ± 0.02 0.0068 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.987 

0.056393 0.82 ± 0.02 0.007 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.988 

0.042268 0.89 ± 0.03 0.0059 ± 0.0006 (ns) 0.000009 ± 0.000004 (ns) (ns) 

 

0.993 

0.031677 0.93 ± 0.03 0.0073 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.986 

0.023729 1.01 ± 0.02 0.0074 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.988 

0.017795 1.1 ± 0.03 0.0076 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.987 

0.013326 1.2 ± 0.02 0.0077 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.988 

0.009985 1.31 ± 0.02 0.0079 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.989 

0.00748 1.44 ± 0.02 0.008 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.99 

0.0056074 1.57 ± 0.02 0.0084 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.991 

0.0042075 1.7 ± 0.03 0.0089 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.989 

0.0031574 1.89 ± 0.02 0.0092 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.993 

0.0023638 2.03 ± 0.03 0.0101 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.991 

0.0017659 2.22 ± 0.03 0.0108 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.991 

0.0013252 2.42 ± 0.03 0.0118 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.994 

0.00099331 2.72 ± 0.03 0.0131 ± 0.0003 (ns) (ns) (ns) (ns) 

 

0.995 

0.00074206 2.99 ± 0.03 0.0148 ± 0.0004 (ns) (ns) (ns) (ns) 

 

0.994 

0.00055583 3.26 ± 0.04 0.0168 ± 0.0004 (ns) (ns) (ns) (ns) 

 

0.994 

0.00041615 3.55 ± 0.04 0.0186 ± 0.0004 (ns) (ns) (ns) (ns) 

 

0.995 

0.00031372 3.91 ± 0.04 0.0205 ± 0.0005 (ns) (ns) (ns) (ns) 

 

0.995 

0.00023315 4.39 ± 0.05 0.0235 ± 0.0005 (ns) (ns) (ns) (ns) 

 

0.995 

Field Strength 

a
2,2,0

 a
2,2,1

 a
2,2,2

 a
2,2,3

 a
2,2,4

 a
2,2,5

   Adjusted-R
2
 

 (s
-1

) (µM
 
· s)

-1
  (ppm · s)

-1
 (µM

-2
 · s

-1
)  (ppm

-2
 · s

-1
) (µM · ppm · s)

-1
   

3 11.3 ± 1 0.019 ± 0.005 0.73 ± 0.08 (ns) -0.0065 ± 0.0025 (ns) 

 

0.978 

1.5 9.9 ± 1.1 0.022 ± 0.006 0.82 ± 0.09 (ns) -0.0073 ± 0.0027 (ns) 

 

0.979 
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the NMRD relaxivity profile. The MnCl2-induced relaxivity (Figure 3-6a) changes drastically at 

higher frequencies with a substantial change above 0.01 T; but below 0.01 T, the relaxivity is 

nearly constant similar to results seen in a pure aqueous environments [14]. The quadratic profile 

at higher magnetic field strengths was indicative of a large hindrance to the tumbling correlation 

time of the bounded hydrogen in the inner sphere [15]. The GdCl3 NMRD is plotted in Figure 3-

6b, and it shows a distinct relaxivity profile, compared to MnCl2. A minor effect of field strength 

exists at the high magnetic field strengths where relaxivity initially decreases before increasing 

until the relaxivity begins to plateau. However, below 0.02 T the apparent dependency increases 

resulting in a large relaxivity at lower magnetic field strengths. This profile has been reported for 

contrast agents used in other gel structures or natural tissue [16,17]; however, the relaxivity in a 

pure aqueous environment approaches a constant value similar to the MnCl2 profile. This suggest 

that the gelling structure has an influence on the relaxivity dependency for the GdCl3-containing 

samples. Potentially the chelated gadolinium ions may still be interacting with the gellan gum 

structure crosslinking the gel and providing a differing relaxation environment. The movement of 

the hydrogens in the inner sphere near the gadolinium ions would be inhibited causing the profile 

to differ from aqueous environments and from the MnCl2 profile thus providing a NMRD profile 

more typically seen in more restricted environments like tissues. Relaxivity of the SPIONs and the 

quadratic effect of the contrast agents were not shown as their effects were not significant through 

most of the magnetic field strengths tested 
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.  

Figure 3-6 NMRD profiles modelled by Solomon-Bloembergen-Morgan theory for a) MnCl2 and 

b) GdCl3. Parameters are reported in Table 3-7. 

 

The NMRD profiles were modelled by the Solomon-Bloembergen-Morgan (SBM) theory which 

fit a mathematical model to parameters relating to the physical relaxation of the inner sphere 

hydrogens [15]. Outer sphere relaxation effects were ignored, and focus was placed on the inner 

sphere relaxation due to the scope of the research and the limits in outer sphere relaxation in 

complexity and use of more general parameters. The SBM model coefficients are related to the 

relaxation characteristics of the nearby protons. However, the SBM model is not designed to 

properly predict low magnetic fields for slowly rotating objects [18], and the gel environment may 

have caused the protons to rotate slowly. The model was able to approximate the MnCl2 system 

well as shown in Figure 3-6a, but since the GdCl3 sample fails to reach a plateau, the model fails 

to fit the relaxivity at lower magnetic field strengths (Figure 3-6b). This was indicative of slowly 

rotating protons in the gelled environment with GdCl3 system. Therefore, the GdCl3 was modelled 

down to 0.02 T to generate the best-fit parameters. Modelled best-fit parameters can be found in 
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Table 3-7 for both metal salt relaxivity. The values were modelled through nonlinear regression in 

the statistical program R. 

 

Table 3-7 NMRD best-fit parameters. * denotes parameters taken from literature [19–21]. ** fixed in the 

fitting procedure 

 

Parameter Description MnCl2 GdCl3-DTPA 

S Total electron spin 5/2* 7/2* 

q Number of bound water molecules 1* 1* 

r (nm) Proton-metal ion distance 2.9* 3.13* 

A/ħ (106 

rad/s) 

Hyperfine coupling constant -37.9* -3.9* 

τm (ns) Water correlation time 32.8 ± 5.2 130 ± 40 

Δ2 (1019 s-2) Transient ZFS interaction 629 ± 66 2.00 ± 0.46 

τv (ps) Fluctuation correlation time 136.1 ± 7.3 8.0 ± 1.4 

τr (ns) Rotational correlation time 3000** 1.18 ± 0.13 

 

3.2.6  MRI contrast agents doped in gel dosimeters 

As one intended use of the MRI gel phantom was to be incorporated with image-guided radiation 

therapy quality assurance, the phantoms were doped with a molecule sensitive to ionizing 

radiation. Previous work in our lab [2] have utilized tetrazolium salts as the radiochromic 

compound within gellan gum hydrogels to produce a 3D gel dosimeter with an effective sensitivity 

at high stability as diffusion is suppressed during the reduction to an insoluble and coloured 

formazan species. To test the compatibility of the contrast agents with the dosimeters, gel 

phantoms with the highest concentrations of MnCl2 and GdCl3 (40 and 140 µM) from the previous 

experiment were added alongside 0.1 or 0.25 mM tetrazolium salts. Additional experiments with 

SPIONs were also conducted. The gels were doped with a tetrazolium salt developed in our lab 3-

(6-methoxybenzothiazol-2-yl)-5-phenyl-2-(3-trifluoromethylphenyl) tetrazol-3-ium chloride 

[MBtPFP] shown in Figure 3-7. The trifluoromethyl functional group acted as an electron 

withdrawing group and the methoxybenzothiazol as electron donators. These side chains may 
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allow for chelates to form between the metal salts used enabling a more complex dosimetry 

analysis and the ability for MR dosimetry.   

 

N

N
+

N
N N
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Figure 3-7 In-house developed tetrazolium salt (MBtPFP) chemical structure 

 

The gels containing both metal salts and tetrazolium salts were then irradiated on a Cobalt-60 

(60Co) source at 0, 10, 20, and 40 Gy, as seen in Figure 3-8 with a peak delta absorbance at 520 

nm for the MBtPFP regardless of the MRI contrast agent added.  
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Figure 3-8 Difference in absorption profile of MBtPFP doped gels post-radiation with no MRI 

contrast agent present. 

 

The results in Figure 3-9 indicate that the MnCl2 reduces the sensitivity of the dosimeter. The 

reduction may be caused by MnCl2 inhibiting the reduction of tetrazolium salts to formazan, or the 

results may indicate that the MnCl2 is interacting with the tetrazolium species causing a chelate. 

GdCl3 did not show any change to the absorption profile indicating that it may be used with the 

current system without a reduction to sensitivity.  
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Figure 3-9 Difference in maximum absorbance (520 nm) of  0.1 mM MBtPFP doped gels at 

various dosage to compare the effect of metal salt additives on radiation dose sensitivity. 

 

To compare the effect of the contrast agents to the radiation sensitivity, the contrast agents were 

added with both the new tetrazolium salt MBtPFP and bisnitrotetrazolium chloride (BNC) a 

common tetrazolium salt used in dosimetry (Figure 3-10). Both profiles had linear dose sensitivity 

at the dosages tested (0 to 40 Gy); however, further analysis with dose rate effects may be of 

interest. The difference in peak absorbance is reduced indicating a reduction in radiation sensitivity 

in the doped MnCl2 gels regardless of tetrazolium specie. The MBtPFP resulted in a more sensitive 

compound compared to the BNC whether doped or not with undoped BNC sensitivity being 

slightly more sensitive than doped MBtPFP. The SPIONs faired similarly to the GdCl3 with no 

large change to sensitivity which was unexpected as some research [22] suggest that SPIONs may 

increase the effect of radiation dose by catalyzing the radiolysis of water. However, the SPIONs 

may primarily be inducing reactive oxygen species (OH-, H2O2, and O2
-) to form by the acting as 

a catalyst either with released iron or the surface of the SPION in the Haber-Weiss cycle and 

therefore for the Fenton reaction [22]. The reactive oxygen species are then being scavenged by 

the oxidizing radical scavenger propylene glycol. Propylene glycol is needed as an oxidizing agent 

scavenger as oxidizing radicals may induce a backwards reaction by the oxidation of the coloured 
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formazan into a tetrazolium salt. This would cause a time-varying response and instability. 

Therefore, these scavengers are necessary to allow stability of the signal over time. However, 

further analysis may prove a more complete dosimetry analysis of the phantom including the 

effects of a magnetic field on the ionizing radiation dosimetry.  

 

 

 

Figure 3-10 Difference in maximum absorbance of gels doped with 0.25 mM of either MBtPFP 

or BNC with or without MnCl2 as an additive to illustrate the effect of MnCl2 on dose sensitivity 

for two separate tetrazolium salt compounds. 

 

As an additional test, the doped gel dosimeters were scanned within a 3 T MRI scanner to 

determine if any change in the local magnetic environment for the contrast agent has occurred with 

the presence tetrazolium or formazan salts. Again, both BNC and MBtPFP were implemented into 

MRI gel phantoms with MnCl2 and experienced a series of radiations. BNC was used as a control 

because previous research in our lab showed no change in BNC magnetic environment with 

ionizing radiation. With MBtPFP, no large change in the T1 relaxation times occur from total dose 

seen in Table 3-8. Additionally, the T1 relaxation times for both BNC and MBtPFP are similar 
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indicating no change from species. These results indicate that the local magnetic environment of 

the metal salt has not changed with the addition of tetrazolium salt or formazan meaning the 

tetrazolium gel dosimeters are not capable to distinguish dose with MRI. Concluding that either 

the metal salt has not formed a chelate with the tetrazolium salt or an inhibited reduction pathway 

from the presence of MnCl2.  

 

Table 3-8 MRI results for tetrazolium gel dosimeters doped with MnCl2 

Tetrazolium Dose T1 error 

BNC 0 148.6 1.34 

BNC 40 147.9 0.78 

MBtPFP 0 148.7 0.11 

MBtPFP 5 150.6 1.07 

MBtPFP 10 149.6 0.021 

MBtPFP 20 149.2 0.05 

MBtPFP 40 149.0 0.18 
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Chapter 4  

4  Mechanical and electrical properties of LiCl-doped gellan gum 

gels 

4.1  Overview 

In this Chapter, the effects of gelling agent, propylene glycol (PG), and lithium chloride (LiCl) 

concentrations to both mechanical and electrical properties of gellan gum gels prepared at different 

concentrations is described. The stress-strain curve of each composition was used to determine the 

compressive modulus at a defined strain, the ultimate compressive stress, and the fracture strain. 

For electrical properties, a dielectric spectroscopy for frequency response analysis was used to 

determine the complex impedance of the material housed in a built cell. The complex impedance 

was matched with a resistive and reactance parts in series to generate the real and imaginary 

components. The relative electric permittivity and conductivity of the samples were then 

calculated. Finally, a design of experiments was implemented to categorize and model each effect 

of compositions to have tailorable properties. 

4.2  Methodology 

4.2.1  Gel preparations 

Gellan gum gels were prepared similar to the MRI phantoms discussed in the Chapter 3.2.2. 

However, instead of MRI contrast agents, monovalent metal salts were added at various 

concentrations (50 to 100 mM). Additionally, the concentrations of propylene glycol and gellan 

gum were varied. Gellan gum was used as the sole gelling agent thus the integrity of the hydrogel 

depends on its concentrations, also as propylene glycol is added to better homogenize the final gel 

it may also affect the mechanical and electrical properties. From preliminary experiments, it was 

determined that a stable hydrogel capable for testing existed from gellan gum concentrations above 

0.5 % (w/v). When the gellan gum concentrations is more than 1 % (w/v), addition of salt caused 

immediate crosslinking and inhomogeneity during gelling. The propylene glycol concentration 

varied from 5 to 10 % (v/v) based on preliminary experiments as hydrogels below 5 % (v/v) caused 

inhomogeneity when filled in the molds and the upper limit was set at 10 % (v/v) to maintain a 
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high-water content. The final gel solutions were poured into their respective molds for either 

electrical, mechanical, or optical measurements. 

4.2.2  Experimental sample preparation for mechanical testing 

For mechanical tests, the final gel solutions were poured into cylindrical polypropylene molds 

fabricated from disposable polypropylene syringes (Figure 4-1). The syringes were cut such that 

the diameter was equivalent to the height (13x13 mm). The gel solutions were poured into the 

molds and were left to set for 12 h at room temperature.  

 

Figure 4-1 Cut cylindrical molds to prepare gel specimens for mechanical experiments 
 

Uniaxial compression test was conducted using an Instron Universal Mechanical testing machine 

equipped with either a 10 N (for preliminary) or 50 N (for the full analysis) load cells (Instron 

model 3345, Canton, MA) at 20 mm/min. Stress was calculated from the applied force per initial 

cross-sectional area of the cylindrical specimen. Strain was calculated as the change in height over 

the initial height of the cylindrical gel. The diameter and height of the gel were measured by a 

digital caliper with an average of multiple measurements after removing the mold. The gels were 

compressed without their mold in unconstrained compressive tests until fracture. A crosshead 

speed of 20 mm/min was chosen to stimulate the compressive deformation. For preliminary 

experiments, a base gel was used as a control with compositions similar to the MRI phantoms 

developed in Chapter 3 with 1.25 % (w/v) gellan gum and 10 % (v/v) PG. Additional compositions 

tested the extent of gellan gum and PG concentrations to determine the compositions for a design 

of experiments. Furthermore, the experiments included lithium chloride (LiCl), lithium formate 

(Li-formate), and tetramethylammonium chloride (TMA-Cl) at 50 mM to examine the effect of 
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each salt. Li-formate may provide additional benefits apart from increasing conductivity, if the 

gels are to be used in tetrazolium dosimetry [1] and TMA-Cl has been used previously to crosslink 

gellan gum phantoms [2]. For the design of experiments, eight distinct compositions (each with 

six repetitions) were utilized and can be seen in Table 4-1 based off Figure 2-7. The gels were left 

in their molds overnight and during transport to maintain the high-water content for consistent 

measurements and were removed immediately prior to mechanical testing. 

Table 4-1 Gel compositions for designed electrical and mechanical analysis 

# Gellan gum % PG % LiCl (mM) 

1 0.6 5 50 

2 1 5 50 

3 0.6 10 50 

4 1 10 50 

5 0.6 5 100 

6 1 5 100 

7 0.6 10 100 

8 1 10 100 

 

4.2.3  Sample preparations and cell fabrication for electrical testing 

For electrical measurements, the gels were poured into in-house fabricated cells. The cells main 

structure were plastic plotting boxes typically used in the designing of circuits and electrical 

analysis (enclosure - plastic potting box, part no. 1596B101; Hammond Manufacturing Ltd., 

Guelph Ontario, Canada). Two conductive electrodes of graphite sheet [0.6 x 105 x 160 mm] 

(reference number: 02.06.060; NOVOTEC; Cincinnati, Ohio) were attached with epoxy glue to 

the ends of the plotting box. The electrodes were chosen as they are a highly conductive surface 

and are a form of carbon paper useful in fuel cells due to the high surface area, thin thickness, and 

high mechanical stability. The area of the electrode was equal to the area of the plotting box side 

(18 x 14 mm)), and the distance between the load cells were measured for the calculations (21.8 

mm). The final cell schematic can be seen in Figure 4-2. 
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Figure 4-2 Manufactured cell holder schematic with gels filled between two electrodes 
 

As indicated by Figure 2-4 (Chapter 2), a waveform generator (Wavetek FG3B sweep function 

generator, Wavetek San Diego, USA) was set in series with a known resistor of 100 kΩ and the 

fabricated cell filled with gel. A voltage of approximately 1 V was provided by the waveform 

generator at a multitude of frequencies. To measure the voltage drop and the phase separation, an 

oscilloscope (PicoScope PC Oscilloscope, Pico Technology, Cambridgeshire, UK) was used. The 

oscilloscope contained two channels, enabling the voltage drop across the circuit and the voltage 

drop across the dielectric material to be calculated independently. With the two voltage drops and 

the phase separation between them, and assuming an equivalent circuit design for the dielectric 

material, the real and imaginary parts of the impedance for the dielectric material can be calculated, 

allowing for the relative permittivity and conductivity to be found. The same compositions listed 

in Table 4-1 were used in the electrical analysis to relate the electrical tests with mechanical 

properties. The frequency range tested varied from 10 Hz to 2 MHz; however, at lower frequencies 

due to the polarization of the interface of the electrode and dielectric material large relative  

permittivity may arise [3]. At higher frequencies (greater than 500 kHz) the copper wires used to 

make the circuit and other electronic components will generate inductance effects increasing the 

current flow. By contrast, at high frequencies, the change in electric properties in some tissues 

become more stagnant [4,5]. 

4.3  The effect of gel composition on mechanical properties 

A typical stress-strain curve of the hydrogels is plotted in Figure 4-3 indicating a combined elastic 

and plastic deformation seen in typical viscoelastic materials including tissues [6,7]. The stress-
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strain curve was fitted by a polynomial equation of degree 3 by regression and resulted in an R2 

(>0.99) for all compositions tested.  

 

Figure 4-3 Typical stress-strain curve for the base gel with 1.25 % (w/v) gellan gum and 10 % 

(v/v) PG with a third-degree polynomial fit. 

 

With the fitted equation, the compressive modulus of a viscoelastic material at a particular strain 

can be found by taking the derivative of the polynomial equation. Once the derivative equation is 

found the value for strain can be inserted to evaluate for compressive modulus at the particular 

strain. The compressive modulus was evaluated at 0.25 strain as a common point among all gels, 

as all gels were capable of strains up to 0.25 without fracturing and the gels are not expected to 

experience strains greater than 25 % in practical use. The ultimate compressive stress and fracture 

strain were taken at a point where the stress-strain curve reached a maximum value and fractured. 

The mechanical properties of the gels at different compositions are shown in Figures 4-4a-c. The 

base gel (1.25 % (w/v) gellan gum and 10 % (v/v) PG) is compared to other compositions 

containing a crosslinking salt (LiCl, Li-Formate, and TMA-Cl) at lowered gellan gum 

concentrations which still enabled a homogenous gel. A sample size of six for each composition 

was implemented.  
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Figure 4-4 Mechanical properties of doped gellan gum gels plotted at various compositions with the x-axis 

denoted by % gellan gum, % PG, and mM ion (LC is LiCl, LF is Li-formate, and TC is TMA-Cl) 

respectively. Where (a) is ultimate compressive stress, (b) is the fracture strain, and (c) is the compressive 

modulus at 0.25 strain. Significance is denoted with unique characters 
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Figure 4-4a demonstrated the ultimate compressive stress of the gel phantoms with varying 

compositions. By decreasing the PG concentration, the gels ultimate compressive stress decreased 

with the weakest gel occurring at 0% PG. Increasing the salt had the largest positive effect on the 

resulting ultimate compressive stress. The cation used had an effect where TMA-Cl had a lowered 

ultimate compressive stress on average. Additionally, TMA-Cl is toxic, and therefore was 

excluded from further studies. Since the effect of Li-formate was similar to that of LiCl further 

studies were conducted using LiCl due to ease of availability. The fracture strain for the same 

compositions is shown in Figure 4-4b where no distinct relation can be determined with salt type, 

PG concentration, or salt concentrations. Therefore, the material fracture strain is not strongly 

dependent on the concentrations tested. The compressive moduli are plotted in Figure 4-4c 

showing a similar relation as the ultimate compressive stress with the salt type and concentration, 

and PG concentration, all affecting the compressive modulus of the gels. These results indicated 

that LiCl as a suitable salt due to its solubility in an aqueous environment and minimal toxicity, 

lower cost, and is still able to induce crosslinking. The PG concentrations below 5 % (v/v) showed 

heterogeneities when poured into the mechanical testing molds; and therefore, concentrations were 

constrained from 5 to 10 % (v/v) for future tests. Increasing the propylene glycol amount also 

decreases the water concentration lowering the tissue equivalency; therefore, a limit to 10% 

propylene glycol was used. The gellan gum concentration was set between 0.6 to 1 % (w/v) to 

analyze the effect of gelling agent. Gels doped with monovalent salts begin to flow at gelling agent 

concentrations at 0.5% and gels above 1% instantly became rigid gels and may form heterogeneous 

systems. Lastly, the LiCl was ranged from 50 to 100 mM to ensure sufficient crosslinking. At these 

concentrations, we expect to find similar tissue equivalency for electrical properties to match the 

electrolyte compositions in tissues. The plot also indicates that gels with similar mechanical 

properties to the gels used previously in our lab may be reached with a lower concentration of 

gelling agent by adding monovalent salts. The mechanical properties data shown from Figures 4-

4 provided useful trends on the role of each constituent.  

 

Building on these, design of experiments approach was taken to optimize the effects of each 

constituent. Data collectively presented in Figure 4-5a-c showed the effects of gellan gum, 

propylene glycol, and LiCl concentrations for the design of experiments.  
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Figure 4-5 Mechanical properties of the designed experiment with (a) for the ultimate compressive stress, 

(b) for the strain at fracture, and (c) for the compressive modulus at 0.25 strain for different compositions 

where lower case letters denote low concentration and capital letters denote high concentration. 

Significance is denoted with unique characters. 
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The box plots indicate that the three compositions all have a positive effect on gels ultimate 

compressive stress and compressive modulus. However, the fracture strain does not appear to 

follow a distinct pattern with the gel’s compositions with a minor reduction with ion concentration. 

For the design experiment, outliers (failed Dixon’s Q-test at a 95% confidence) were removed. To 

quantify the effects, a regression was made containing the base, linear, and interactive effects of 

all compounds for the ultimate compressive stress, fracture strain, and compressive modulus. 

ANOVA was used to determine the significant parameters, shown in Appendix I, and the model 

was rebuilt through regression with only the significant terms. The resulting terms can be found in 

equations (4-1) and (4-2) for ultimate compressive stress and compressive modulus. The strain is 

not shown as the model failed to accurately predict the variance and the effects of composition to 

fracture strain. 

𝜎𝑚 = −86.8 + 93.1 · 𝐶𝑔𝑛 + 4.47 · 𝐶𝑃𝐺 + 0.41 · 𝐶𝐿𝑖𝐶𝑙  −

                               0.026 · 𝐶𝑃𝐺 · 𝐶𝐿𝑖𝐶𝑙       [kPa]    
(4-1) 

Where σm is the ultimate compressive stress Cgn is the gellan gum concentration in % (w/v), CPG 

is the propylene glycol concentration in % (v/v), and CLiCl is the LiCl concentration in mM. 

𝐸𝜀=0.25 = −135 + 18.4 · 𝐶𝑔𝑛 + 3.42 · 𝐶𝑃𝐺 − 0.75 · 𝐶𝐿𝑖𝐶𝑙 + 15 · 𝐶𝑔𝑛 · 𝐶𝑃𝐺 +

                                +3.7 · 𝐶𝑔𝑛 · 𝐶𝐿𝑖𝐶𝑙        [kPa]       
(4-2) 

Where Eε=0.25 is the compressive modulus at 0.25 strain. 

For the ultimate compressive stress, the base effect was significant as were the linear parameters 

of all compositions tested (gellan gum, PG, and LiCl) as expected. The only significant interaction 

was between PG and LiCl and was negative suggesting that at higher concentrations of PG and 

LiCl, the interactions between the materials will weaken the gel. The adjusted R2 value for the 

ultimate compressive stress model was 0.957 indicating a close approximation of the model. When 

testing the model, the system fails to accurately characterize the effects of low concentrations of 

gellan gum (at or below 0.5 % (w/v)) which is likely caused by the unstability to remain a rigid 

gel and is in the process of transitioning into a solution with flow. For the compressive modulus, 

again the base effect and all linear parameters were significant. However, the effect of LiCl without 

any other parameter is negative meaning that LiCl reduces the gellan gums compressive modulus 

at 0.25 strain. This seems counterintuitive from the general trends seen in Figure 4-5 with gels 

containing higher concentrations of LiCl leading to stiffer gels. However, the linear component is 
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only one aspect, and the interaction of LiCl to the other parameters may explain this discrepancy. 

From the yields stress, the interaction between the gellan gum and the PG and the interaction 

between the gellan gum and LiCl was significant and positive indicating that the gellan gum 

interactions with PG or LiCl will increase the compressive modulus of the material. Therefore, the 

general increase in mechanical properties from LiCl can be attributed to the interaction between 

LiCl and gellan gum. Again, the adjusted R2 value indicated a reasonable fit with 0.970.  To better 

characterize the fracture strain, a more elaborate experiment may be required determining 

additional effects or a nonlinear regression may produce significant terms. However, if the effects 

are minor, no form of modelling will provide a definitive answer indicating that the fracture strain 

is not dependent on the compositions. 

 

The gellan gum concentration and LiCl concentration will directly impact the gel matrix and the 

degree of crosslinking strengthening the gel [8], and therefore their effects were expected. 

However, PG acts as a co-solvent and is not directly related to the gel matrix when compared to 

the other parameters, so the large contribution seen in the results must be generated by other 

interactions. Previous research with high acyl gellan gum phantoms for ultrasound applications 

also indicated the significant effect of PG [9]. A possible reason why PG showed a noticeable 

effect may be due to the change of free water and bound water in the hydrogel by PG. Bound water 

refers to primary or secondary bounded water molecules onto sites on the gel network [10]. The 

gel matrix will continue to absorb water even after all sites are filled due to an osmotic driving 

force of the network chain and is eventually opposed by the crosslinking which causes an elastic 

retraction force. Therefore, an equilibrium swelling point occurs between the forces. Any 

additional water absorbed after the polymer matrix is fully bounded is referred to as the free water 

or bulk water that exist in the space between the network chains, pores, or voids. As PG 

concentrations increase, the total amount of water (bound or free) is reduced. However, PG may 

also bind to the polymer matrix and also will account for some of the free liquid existing between 

the polymer matrix as PG is slightly less polar than water. The total free liquid molecules may 

provide some incompressibility in the hydrogels. PG will not only displace some water it may also 

decrease the water activity due to cohesive linking between PG and water, a negative deviation 

from Raoult’s law. Therefore, the water is bound to the gellan gum and also contains 
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intermolecular forces with PG in solution explaining the increase in mechanical integrity of the 

gels and the significant positive interactive effect between gellan gum and PG seen in the 

compressive modulus model. Previous research have investigated the intermolecular forces and 

electrostatic interactions between macromolecules in a dual liquid phase hydrogel system, also 

called coacervate, as a method to increase and tune mechanical properties [11,12]. An additional 

explanation may be related to the change in viscosity, as PG will increase the viscosity of solutions. 

A more viscous unbounded free-liquid molecules trapped within the gel matrix will require more 

stress to reach the same deformation leading to a stiffer material. Previous research comparing the 

gel strength and viscosity to the concentration of gel polymer or co-solvent polymer (polyethylene 

glycol), showed an increase of mechanical properties and viscosity [13,14]. The positive and linear 

effects of concentration whether PG, LiCl, or gellan gum seem to be true within the tested 

concentrations, but a limit may exist beyond the concentrations tested. 

 

4.4  The effect of gel composition on electrical properties 

Figure 4-6 to 4-8 illustrates the results from the dielectric spectroscopy of gellan gum gels doped 

at various LiCl concentrations. Figure 4-6 plots the calculated total impedance of the dielectric 

material based on an equivalent circuit with a resistive and a reactive part in series. The plot 

indicated three materials at two different LiCl concentrations and the base gel used similarly in the 

MRI phantoms. In the plot, the electrode polarization interference of the test cell can be seen with 

the large impendence values at low frequencies. At low frequencies, the dielectric material has 

sufficient time to create an interface at the electrodes causing polarization which in turn causes the 

apparent impedance to increase. However, the negative dependency of impedance to increasing 

frequency was expected and follows similar trends of other dielectric materials [15]. At higher 

frequencies, the impendence values reach a plateau where frequency change causes little change 

to the total impedance. At the extremes, large frequencies create induction effects for the copper 

circuitry adding electrical energy into the system and reducing the apparent impedance. However, 

the results indicated that the higher the salt concentration is, the lower the impedance will be, as 

the dielectric material allows greater current flow.  
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Figure 4-6 The total impedance of the dielectric material with differing LiCl concentrations at a 

range of frequencies showing some polarization and inductance effects.  

 

The relative permittivity of the same compositions is plotted in Figure 4-7. The polarization has 

caused the low-frequency values to contain error, but the permittivity is a function of frequency 

and follows similar trends observed in tissues with a decrease in permittivity with frequencies in 

similar ranges [4,5]. Additionally, as the salt concentration increases the relative permittivity of 

the material seems to increase. The increase of relative permittivity is expected as the material is 

no longer storing the electrical energy in the polarization of the material and instead allows greater 

current flow through the material from the increased number of total ions. 
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Figure 4-7 Relative permittivity of three gellan gum gels with differing LiCl concentrations at a 

range of frequencies. 

 

The conductivity of the same compositions is plotted in Figure 4-8 and it demonstrated the large 

effect of LiCl on conductivity. The conductivity of a dielectric can also be stated as how “lossy” 

the material is to charges and is unable to store the energy by polarization and instead can convert 

the electrical energy to other forms of energy. The conductivity became three and five times larger 

with 50 and 100 mM LiCl, respectively. The trend with frequency also indicated an initial large 

increase which is compounded by interface polarization errors. At a certain frequency dependent 

on ion concentration, the conductivity begins to plateau to a relative constant value, and again at 

larger frequencies the apparent conductivity increases due to the inductance effects in the circuitry. 

A similar profile can be observed in previous hydrogel measurements [9] and tissues [5] with 

higher frequencies the conductivity is relatively consistent with less frequency variation. 
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Figure 4-8 Conductivity of the dielectric material at a range of frequencies with differing LiCl 

concentrations. 

 

To better characterize the hydrogels at a higher frequency, a more elaborate system is required that 

will not cause inductance in the circuitry. Comparing the results to tissues showed that the tissue 

also reaches a plateau at high frequency and any change is minor [5]. Often, the values are 

compared at one specific frequency at the plateau and is often depended on the intended 

application. Therefore, a bar graph with the conductivity at a frequency of 100 kHz with the eight 

compositions tested for the mechanical properties and the base gel as a point of comparison is 

shown in Figure 4-9. The only composition to have a large and positive effect is the LiCl. The PG 

and gellan gum concentrations did not appear to affect the conductivity of the gels greatly. Typical 

values for liver tissues are also plotted on the bar graph as a constant line. The difference from the 

base gel to tissues is large, but when gels are doped with LiCl the conductivity reaches values 

similar to tissues. 
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Figure 4-9 Conductivity of various gel samples compared to tissue conductivity. Where x-axis is 

coded by % gellan gum, % PG, and mM LiCl. The healthy and tumor liver conductivity values are 

plotted as dashed lines for comparisons and were found in [16]. 

 

To provide a quantitative analysis on the effects from compositions, the model was fit by a 

regression similar to the mechanical tests. ANOVA was used to determine significant terms from 

the base, linear effects of each additive, and the interaction between all additives. The model was 

refined to only include the significant terms, seen in Appendix J. The system is limited to the linear 

effects, but the results indicate a good fit (R2 = 0.986). 

𝜎𝑒 = 0.16 − 0.0062 · 𝐶𝑃𝐺 + 0.0044 · 𝐶𝐿𝑖𝐶𝑙      [S/m]       (4-3) 

Where σe represents the conductivity in S/m of the dielectric material at 100 kHz, CPG represents 

the % (v/v) of PG and CLiCl represents the concentration of LiCl in mM. The base effect was 

significant as were the LiCl concentration linear effects as expected. The PG effect is less 
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significant and has a lower impact. The gellan gum concentration and any interaction terms were 

not significant. Indicating that the degree of crosslinking or the interaction between the metal ions 

and the gel matrix did not affect the electrical properties of the gel. The resulting model was able 

to accurately fit the data (R2 = 0.986) even with only one repetition of the test. A higher number 

of repetitions may allow for greater modelling of the parameters. The conductivity of the gels at 

100 kHz was not affected by interface polarization meaning that cell variability is minimal which 

is shown by the adjusted R2 value. Also, at 100 kHz no inductance effect should be produced in 

the copper circuitry. The reasoning that the PG effect is significant and also negative may be 

caused by the lower overall water content in the gels reducing the mobility of the ions as PG will 

increase the viscosity. Additionally, PG is less conductive than deionized water resulting in a lower 

total conductivity of the hydrogel when PG concentrations are increased with a conductivity of 

0.1×10-6 S/m compared to 5.5×10-6 S/m respectively.  
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Chapter 5  

5  Conclusions and suggested future directions 

This chapter concludes on the main results and topics of the thesis and ends with a list of possible 

future work to expand upon the knowledge gained. 

5.1  Summary of thesis 

In this thesis a gellan gum MRI phantom with tailorable magnetic relaxation properties was 

developed. SPIONs were prepared and their MRI relaxivity confirmed their possible use as an 

effective T2 modifier with the potential for further modification with coating and preparation 

optimization. Using a central composite design of experiments (Figure 2-6), a mathematical model 

capable of linear, quadratic, and interactive effects was developed capable of predicting spin-

lattice and spin-spin relaxation properties for a range of concentration of dopants. The model was 

shown to provide an accurate fit for both R1 and R2 relaxation rates (Tables 3-3 to 3-6). Adjusting 

the contrast agent concentrations would enable a wide range of tissue equivalent relaxation 

properties for the gellan gum samples (Figure 3-4c and f). The effect of temperature on the 

relaxation rate was found to be minimal. No measurable changes to the appearance of the gel or 

its optical density profile were observed after six weeks of storage at room temperature 

demonstrating that methyl 4-hydroxybenzoate and propylene glycol were effective preservatives 

(Figure 3-5). A unique central composite design was developed for either MnCl2 or GdCl3 in the 

gel phantom allowing a choice in relaxation modifier. The MnCl2 phantom was more susceptible 

to magnetic field variation but requires lower concentrations to reach targeted relaxation times. 

The GdCl3 phantom is less dependent on magnetic field variations but is associated with 

environment and health concerns. A major limitation to the use manganese-based contrast agents 

is the relaxivity dependency to magnetic field strength. This limitation was offset by building a 

unique model at each magnetic field strength allowing the fabrication of magnetic field strength 

specific material for MRI phantom use. The significant parameters in the relaxation rate regression 

model were discussed and shown allowing the fabrication of MRI phantoms with predetermined 

relaxation properties. Finally, the contrast agents relaxivity dependency on magnetic field strength 

was examined through SBM theory illustrating the effects the gel structure may have on to the 

proton’s magnetic environment (Figure 3-6).  
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3D gel dosimeters with a radiochromic tetrazolium salt and metal salts (MnCl2 and GdCl3) were 

prepared based on previous research and were irradiated at different doses to determine the effect 

to dose sensitivity. The metal salt concentrations did not alter the linear dose sensitivity in the dose 

range tested (Figure 3-10); however, sensitivity was reduced for gel dosimeters doped with MnCl2. 

It was hypothesized that the MnCl2 limits the reduction of tetrazolium salts to formazan. However, 

GdCl3 doped gels did not experience the same reduction in sensitivity indicating that GdCl3 may 

be incorporated into tetrazolium gel dosimeters without modifying sensitivity. However, as stated 

before GdCl3 contains environmental and health concerns causing limitations if incorporated. It 

was also shown that the magnetic environment of MnCl2 is not altered with the presence of either 

tetrazolium salts or formazans. 

 

To better characterize the gel phantoms, mechanical and electrical tests were conducted. With the 

implementation of another design of experiments, a 23 multifactorial design of experiment model 

was able to determine the significant terms and characterize the effects by a regression model. The 

mechanical tests focused on compressive forces as a phantom could experience indentations during 

use. The results indicate that the base gels properties are able to withstand stress up to 30 kPa, and 

with the addition of crosslinking agents may form stronger gels or conversely gels with similar 

strength but lower gelling concentration. The type of crosslinking agent used can be manipulated 

for additional applications outside of mechanical tests with Li-formate acting as an oxidizing 

scavenger in dosimetry, or electrical conductivity with other monovalent metal salts. Results 

indicated that the effect of concentration for gellan gum, PG, and LiCl all were significant to the 

ultimate compressive stress and compressive modulus of the material (Figure 4-5). However, 

fracture strain was unable to be modelled likely requiring a more sophisticated modelling of 

parameters, but gellan gum concentration seem to have little to no affect on strain. The mechanical 

property models are useful for gels, but it fails to characterize the properties as the gel begins to 

flow and the is in the process of transitioning from a gel to a solution. However, gels with 

compressive modulus and strength larger than the base gel currently used at lowered gellan gum 

concentrations can be made with confidence as seen by the adjusted R2 values.  
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The electrical properties were evaluated by dielectric spectroscopy by assuming the dielectric 

material acts similarly to an equivalent circuit with resistive and reactive components (Figure 2-4) 

allowing for the real and imaginary components of the electric permittivity to be calculated along 

with the conductivity of the dielectric materials. The existence of low and high-frequency errors 

occurs due to interface polarization between the electrodes and dielectric material and due to the 

copper circuitry having an inductance effect at high frequencies, respectively. However, at a 

constant frequency accurate comparison of electrical properties was made with little variability in 

the individual cells indicated by the adjusted R2 value (>0.98) with the regression model. Greater 

accuracy could be achieved with increase sample size for each composition, low-frequency values 

could be calibrated prior for better evaluation, and a more sophisticated circuitry could be used to 

remove the inductance effects. The conductivity values at 100 kHz were evaluated to tissues 

(Figure 4-9), and with the mathematical model, tailorable conductivity values could be made. 

 

5.2  Future directions 

Additional experiments may provide further detail on the magnetic relaxation properties of gellan 

gum as a gel phantom. Both the gelling agent and PG concentrations will affect the magnetic 

properties of the hydrogel; and therefore, further studies to characterize their effect on the magnetic 

relaxation times could be conducted to expand the modelling of parameters. As the gels are 

crosslinked by monovalent salts used to modify conductivity, it may also be an interesting factor 

for modelling tissue equivalency for magnetic properties while also simulating similar electrical 

properties. Additional studies with 17O NMR or EPR would confirm the magnetic relaxation 

properties developed in the NMRD model and provide a better fit to the modelling. Additionally, 

expanding the model to include the effects outside the inner sphere may create a more accurate 

model. The analysis of the NMRD profile may allow for low field strength measurements which 

is becoming an interesting field to explore because at larger magnetic field strengths the intrinsic 

difference in relaxation times between tissues is reduced limiting the contrast difference between 

tissues [1]. If the focus was placed at lower field strengths, one could exploit the inherent 

differences in tissues to produce enhanced contrast images and may implement the NMRD 

modeled hydrogels as a tool for comparison [2,3]. To properly develop gel dosimeters further 

research and experiments would be required to determine how the sensitivity is affected by the 
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additives chosen for magnetic, electrical, or mechanical modification. The tetrazolium salts effect 

to the mechanical and electrical properties could also be studied. Mechanical studies could be 

expanded to include large volume samples to coincide with tissue sized phantoms. Improving upon 

the electrical experiment setup could alleviate the low and high frequency errors discussed. Once 

corrected, the electric properties of the gel could be fitted by known mathematical models (Cole-

Cole equations) to gain additional information of the electrical properties of the gel including the 

dielectric relaxation change and to build a predictive model of relative permittivity as a function 

of frequency [4–6]. Gels then doped with MRI contrast agents and radiochromic compounds for 

dosimetry could also be tested for mechanical and electrical tests to relate their properties together. 

Other research has focused gellan gum phantoms for MRI hyperthermia applications [7–9] due to 

the high thermal stability of gellan gum gels. Therefore, further studies into the thermal 

conductivity of the gels in addition to the electrical studies could relate the characteristics of the 

SPIONs within the gel environment when heated and could allow our system to be implemented 

in hyperthermia studies [10]. Therefore, further optimization and scale up production of the 

SPIONs may be of interest. 

.  
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Appendices 

Supplementary Information 

 

Appendix A: T2
 map at 3 T after eroding one voxel around the gel region of interest 

(ROI) boundary 
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Appendix B: T2 map at 3 T after eroding three voxels around the gel ROI boundary 
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Appendix C: T2 decay curve with fit 
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Appendix D: FTIR of dried powder SPIONs  
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Appendix E: P-values for longitudinal relaxation rates (R1) for MnCl2  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Field 

Strength 
a1,1,0 a1,1,1 a1,1,2 a1,1,3 a1,1,4 a1,1,5  

 
3 <0.001 <0.001 0.011 0.553 0.271 0.48 

 
1.5 <0.001 <0.001 0.018 0.124 0.301 0.357 

 
1.0009 <0.001 <0.001 0.344 0.009 0.924 0.221 

 
0.75691 <0.001 <0.001 0.293 0.041 0.553 0.244 

 
0.56715 <0.001 <0.001 0.821 0.295 0.117 0.942 

 
0.42505 <0.001 <0.001 0.646 0.526 0.163 0.3 

 
0.31851 <0.001 <0.001 0.214 0.814 0.672 0.337 

 
0.23863 <0.001 <0.001 0.28 0.258 0.708 0.493 

 
0.17885 <0.001 <0.001 0.161 0.377 0.924 0.399 

 
0.13403 <0.001 <0.001 0.287 0.136 0.7 0.649 

 
0.10049 <0.001 <0.001 0.062 0.86 0.427 0.416 

 
0.075277 <0.001 <0.001 0.195 0.15 0.6 0.518 

 
0.056393 <0.001 <0.001 0.121 0.922 0.756 0.305 

 
0.042268 <0.001 <0.001 0.058 0.71 0.877 0.209 

 
0.031677 <0.001 <0.001 0.14 0.818 0.906 0.503 

 
0.023729 <0.001 <0.001 0.086 0.658 0.634 0.396 

 
0.017795 <0.001 <0.001 0.07 0.513 0.646 0.259 

 
0.013326 <0.001 <0.001 0.062 0.478 0.952 0.145 

 
0.009985 <0.001 <0.001 0.116 0.882 0.696 0.307 

 
0.00748 <0.001 <0.001 0.058 0.502 0.578 0.399 

 
0.0056074 <0.001 <0.001 0.073 0.396 0.626 0.368 

 
0.0042075 <0.001 <0.001 0.125 0.425 0.636 0.531 

 
0.0031574 <0.001 <0.001 0.065 0.455 0.942 0.366 

 
0.0023638 <0.001 <0.001 0.149 0.283 0.879 0.408 

 
0.0017659 <0.001 <0.001 0.062 0.061 0.414 0.313 

 
0.0013252 <0.001 <0.001 0.044 0.032 0.224 0.265 

 
0.00099331 <0.001 <0.001 0.062 0.106 0.981 0.258 

 
0.00074206 <0.001 <0.001 0.061 0.14 0.799 0.286 

 
0.00055583 <0.001 <0.001 0.137 0.142 0.973 0.326 

 
0.00041615 <0.001 <0.001 0.092 0.084 0.762 0.308 

 
0.00031372 <0.001 <0.001 0.02 0.02 0.787 0.157 

 
0.00023315 <0.001 <0.001 0.16 0.161 0.726 0.261 
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Appendix F: P-values for transverse relaxation rates (R2) for MnCl2 

 

 

  

Field 

Strength 
a

2,1,0
 a

2,1,1
 a

2,1,2
 a

2,1,3
 a

2,1,4
 a

2,1,5
 

  

3 <0.001 0.001501 0.001 0.115 0.852 0.595 

 
1.5 <0.001 0.004608 0.001 0.1 0.959 0.619 
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Appendix G: P-values for longitudinal relaxation rates (R1) for GdCl3 

 

  

Field 

Strength 
a

1,2,0
 a

1,2,1
 a

1,2,2
 a

1,2,3
 a

1,2,4
 a

1,2,5
 

  

3 <0.001 5.7865E-06 0.047 0.123 0.39 0.881 

 
1.5 <0.001 1.82762E-05 0.039 0.099 0.532 0.977 

 
1.0009 <0.001 7.81475E-06 0.111 0.031 0.293 0.981 

 
0.75691 <0.001 5.51628E-06 0.059 0.015 0.187 0.914 

 
0.56715 <0.001 4.05091E-05 0.208 0.103 0.381 0.984 

 
0.42505 <0.001 2.22426E-05 0.162 0.07 0.331 0.974 

 
0.31851 <0.001 1.9788E-05 0.152 0.083 0.345 0.921 

 
0.23863 <0.001 5.37311E-06 0.083 0.031 0.337 0.904 

 
0.17885 <0.001 1.35446E-05 0.185 0.139 0.462 0.963 

 
0.13403 <0.001 8.80855E-06 0.165 0.121 0.405 0.936 

 
0.10049 <0.001 2.03898E-05 0.24 0.126 0.471 0.968 

 
0.075277 <0.001 8.48963E-06 0.183 0.104 0.275 0.962 

 
0.056393 <0.001 6.26222E-06 0.172 0.085 0.285 0.971 

 
0.042268 <0.001 1.52678E-06 0.076 0.035 0.257 0.99 

 
0.031677 <0.001 1.2222E-05 0.211 0.133 0.473 0.983 

 
0.023729 <0.001 1.02319E-05 0.227 0.178 0.477 0.99 

 
0.017795 <0.001 7.85899E-06 0.197 0.09 0.29 0.989 

 
0.013326 <0.001 5.36343E-06 0.146 0.085 0.274 0.904 

 
0.009985 <0.001 4.90277E-06 0.153 0.093 0.268 0.974 

 
0.00748 <0.001 5.05879E-06 0.157 0.129 0.358 0.992 

 
0.0056074 <0.001 3.6092E-06 0.157 0.139 0.203 0.933 

 
0.0042075 <0.001 1.2566E-05 0.253 0.357 0.742 0.964 

 
0.0031574 <0.001 2.69376E-06 0.141 0.201 0.205 0.999 

 
0.0023638 <0.001 1.23052E-05 0.297 0.551 0.672 0.91 

 
0.0017659 <0.001 1.12969E-05 0.308 0.588 0.755 0.941 

 
0.0013252 <0.001 5.07581E-06 0.271 0.826 0.712 0.948 

 
0.00099331 <0.001 1.51338E-06 0.15 0.39 0.306 0.94 

 
0.00074206 <0.001 2.72992E-06 0.2 0.644 0.335 0.998 

 
0.00055583 <0.001 3.77747E-06 0.357 0.803 0.625 0.961 

 
0.00041615 <0.001 2.19732E-06 0.293 0.816 0.582 0.959 

 
0.00031372 <0.001 2.02045E-06 0.246 0.907 0.386 0.933 

 
0.00023315 <0.001 1.57389E-06 0.304 0.328 0.698 0.969 
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Appendix H: P-values for transverse relaxation rates (R2) for GdCl3 

 

  Field 

Strength 
a

2,2,0
 a

2,2,1
 a

2,2,2
 a

2,2,3
 a

2,2,4
 a

2,2,5
 

  

3 4.21E-07 0.009027 <0.001 0.54 0.028 0.068 

 
1.5 6.38E-07 0.006682 <0.001 0.804 0.033 0.071 
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Appendix I: P-values for mechanical tests 

 

  Compositions Stress Strain 
Compressive 

modulus   

(Intercept) <0.001 <0.001 <0.001 
 

gn <0.001 0.75 <0.001 
 

PG <0.001 <0.001 <0.001 
 

ion <0.001 <0.001 <0.001 
 

gn-PG 0.116 0.016 0.012 
 

gn-ion 0.339 0.598 <0.001 
 

PG-ion 0.018 0.088 0.582 
 

gn-PG-ion 0.993 0.006 0.157 
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Appendix J: P-values for electrical measurement  

  

Compositions Conductivity   

(Intercept) <0.001 
 

gn 0.624 
 

PG 0.039 
 

ion <0.001 
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Appendix K: Copyright permission 
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